欢迎来到天天文库
浏览记录
ID:39370751
大小:94.00 KB
页数:3页
时间:2019-07-01
《数学人教版八年级下册二次根式的性质》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、16.1.1二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“(a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成课本的三个思考题:二、探索新知很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.(
2、学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.例2.当x是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥当
3、x≥时,在实数范围内有意义.三、巩固练习四、应用拓展例3.当x是多少时,+在实数范围内有意义?分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.例4(1)已知y=++5,求的值.(答案:2)(2)若+=0,求a2004+b2004的值.(答案:)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六
4、、布置作业第一课时作业设计一、选择题 1.下列式子中,是二次根式的是()A.-B.C.D.x2.下列式子中,不是二次根式的是()A.B.C.D.3.已知一个正方形的面积是5,那么它的边长是()A.5B.C.D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?2.当x是多少时,+x2在实数范围内有意义
5、?3.若+有意义,则=_______.4.使式子有意义的未知数x有()个.A.0B.1C.2D.无数5.已知a、b为实数,且+2=b+4,求a、b的值.
此文档下载收益归作者所有