Dynamic Ridge Polynomial Neural Network Forecasting the univariate

Dynamic Ridge Polynomial Neural Network Forecasting the univariate

ID:39359023

大小:417.10 KB

页数:12页

时间:2019-07-01

Dynamic Ridge Polynomial Neural Network Forecasting the univariate_第1页
Dynamic Ridge Polynomial Neural Network Forecasting the univariate_第2页
Dynamic Ridge Polynomial Neural Network Forecasting the univariate_第3页
Dynamic Ridge Polynomial Neural Network Forecasting the univariate_第4页
Dynamic Ridge Polynomial Neural Network Forecasting the univariate_第5页
资源描述:

《Dynamic Ridge Polynomial Neural Network Forecasting the univariate》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ExpertSystemswithApplications38(2011)3765–3776ContentslistsavailableatScienceDirectExpertSystemswithApplicationsjournalhomepage:www.elsevier.com/locate/eswaDynamicRidgePolynomialNeuralNetwork:Forecastingtheunivariatenon-stationaryandstationarytradingsignalsa,⇑bcRozaidaGhazali,Abir

2、JaafarHussain,PanosLiatsisaInformationTechnologyandMultimediaFaculty,UniversitiTunHusseinOnnMalaysia,MalaysiabSchoolofComputingandMathematicalSciences,LiverpoolJohnMooresUniversity,UKcSchoolofEngineeringandMathematicalSciences,CityUniversity,London,UKarticleinfoabstractKeywords:Th

3、ispaperconsidersthepredictionofnoisytimeseriesdata,specifically,thepredictionoffinancialsig-DynamicRidgePolynomialNeuralNetworknals.AnovelDynamicRidgePolynomialNeuralNetwork(DRPNN)forfinancialtimeseriespredictionisFinancialsignalspresentedwhichcombinesthepropertiesofbothhigherorderan

4、drecurrentneuralnetwork.InanHigherorderneuralnetworkattempttoovercomethestabilityandconvergenceproblemsintheproposedDRPNN,thestabilitycon-TimeseriespredictionvergenceofDRPNNisderivedtoensurethatthenetworkpossesauniqueequilibriumstate.Inordertoprovideamoreaccuratecomparativeevaluat

5、ionintermsofprofitearning,empiricaltestingusedinthisworkencompassnotonlyonthemoretraditionalcriteriaofNMSE,whichconcernedathowgoodtheforecastsfittheirtarget,butalsoonfinancialmetricswheretheobjectiveistousethenetworkspredic-tionstogenerateprofit.Extensivesimulationsforthepredictionofo

6、neandfivestepsaheadofstationaryandnon-stationarytimeserieswereperformed.TheresultingforecastmadebyDRPNNshowssubstantialprofitsonfinancialhistoricalsignalswhencomparedtovariousneuralnetworks;thePi-SigmaNeuralNetwork,theFunctionalLinkNeuralNetwork,thefeedforwardRidgePolynomialNeuralNet

7、work,andtheMultilayerPerceptron.SimulationresultsindicatethatDRPNNinmostcasesdemonstratedadvanta-gesincapturingchaoticmovementinthefinancialsignalswithanimprovementintheprofitreturnandrapidconvergenceoverothernetworkmodels.Ó2010ElsevierLtd.Allrightsreserved.1.Introductiontionunitson

8、ly.Theutilizationofhigherorderter

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。