A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm

A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm

ID:39909048

大小:743.58 KB

页数:10页

时间:2019-07-14

A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第1页
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第2页
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第3页
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第4页
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第5页
资源描述:

《A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Knowledge-BasedSystems37(2013)378–387ContentslistsavailableatSciVerseScienceDirectKnowledge-BasedSystemsjournalhomepage:www.elsevier.com/locate/knosysAhybridannualpowerloadforecastingmodelbasedongeneralizedregressionneuralnetworkwithfruitflyoptimizationalgorithmHong-zeLi,SenGuo⇑,Chun-ji

2、eLi,Jing-qiSunSchoolofEconomicsandManagement,NorthChinaElectricPowerUniversity,Beijing102206,ChinaarticleinfoabstractArticlehistory:AccurateannualpowerloadforecastingcanprovidereliableguidanceforpowergridoperationandpowerReceived4April2012constructionplanning,whichisalsoimportantforthe

3、sustainabledevelopmentofelectricpowerindus-Receivedinrevisedform30May2012try.Theannualpowerloadforecastingisanon-linearproblembecausetheloadcurveshowsanon-linearAccepted18August2012characteristic.Generalizedregressionneuralnetwork(GRNN)hasbeenproventobeeffectiveindealingAvailableonline

4、30August2012withthenon-linearproblems,butitisveryregretfullyfindsthattheGRNNhaverarelybeenappliedtotheannualpowerloadforecasting.Therefore,theGRNNwasusedforannualpowerloadforecastinginthisKeywords:paper.However,howtodeterminetheappropriatespreadparameterinusingtheGRNNforpowerloadAnnualp

5、owerloadforecastingforecastingisakeypoint.Inthispaper,ahybridannualpowerloadforecastingmodelcombiningfruitGeneralizedregressionneuralnetworkFruitflyoptimizationalgorithmflyoptimizationalgorithm(FOA)andgeneralizedregressionneuralnetworkwasproposedtosolvethisOptimizationproblemproblem,wher

6、etheFOAwasusedtoautomaticallyselecttheappropriatespreadparametervalueforParameterselectiontheGRNNpowerloadforecastingmodel.Theeffectivenessofthisproposedhybridmodelwasprovedbytwoexperimentsimulations,whichbothshowthattheproposedhybridmodeloutperformstheGRNNmodelwithdefaultparameter,GRN

7、Nmodelwithparticleswarmoptimization(PSOGRNN),leastsquaressupportvectormachinewithsimulatedannealingalgorithm(SALSSVM),andtheordinaryleastsquareslinearregression(OLS_LR)forecastingmodelsintheannualpowerloadforecasting.Ó2012ElsevierB.V.Allrightsreserved.1.Introductionneeded.However,bec

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。