Neural network - trajectory generation

Neural network - trajectory generation

ID:40947163

大小:499.82 KB

页数:17页

时间:2019-08-11

Neural network - trajectory generation_第1页
Neural network - trajectory generation_第2页
Neural network - trajectory generation_第3页
Neural network - trajectory generation_第4页
Neural network - trajectory generation_第5页
资源描述:

《Neural network - trajectory generation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、302IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.31,NO.3,JUNE2001NeuralNetworkApproachestoDynamicCollision-FreeTrajectoryGenerationSimonX.Yang,Member,IEEE,andMaxMeng,Member,IEEEAbstract—Inthispaper,dynamiccollision-freetrajectorysiblepathsinthew

2、orkspace,whichnormallydealwithstaticgenerationinanonstationaryenvironmentisstudiedusingenvironmentonlyandarecomputationallyexpensivewhenthebiologicallyinspiredneuralnetworkapproaches.Theproposedenvironmentiscomplex.Somesearchingbasedmodels(e.g.,neuralnetworkistopolo

3、gicallyorganized,wherethedynamics[12],[23],[50])sufferfromundesiredlocalminima,i.e.,theofeachneuronischaracterizedbyashuntingequationoranadditiveequation.ThestatespaceoftheneuralnetworkcanberobotsmaybetrappedinsomecasessuchaswithconcaveeithertheCartesianworkspaceort

4、hejointspaceofmulti-jointU-shapedobstacles.SeshadriandGhosh[47]proposedanewrobotmanipulators.Thereareonlylocallateralconnectionspathplanningmodelusinganiterativeapproach.Howeveramongneurons.Thereal-timeoptimaltrajectoryisgeneratedthismodeliscomputationallycomplicate

5、d,particularlyinthroughthedynamicactivitylandscapeoftheneuralnetworkacomplexenvironment.LiandBui[28]proposedafluidwithoutexplicitlysearchingoverthefreespacenorthecollisionpaths,withoutexplicitlyoptimizinganyglobalcostfunctions,modelforrobotpathplanninginastaticenvir

6、onment.Ongwithoutanypriorknowledgeofthedynamicenvironment,andandGilbert[38]proposedanewmodelforpathplanningwithwithoutanylearningprocedures.Thereforethemodelalgorithmpenetrationgrowthdistance,whichsearchesovercollisioniscomputationallyefficient.Thestabilityoftheneur

7、alnetworkpathsinsteadofsearchingoverfreespaceasmostothermodelssystemisguaranteedbytheexistenceofaLyapunovfunctiondo.Thismodelcangenerateoptimal,continuousrobotpathscandidate.Inaddition,thismodelisnotverysensitivetothemodelparameters.Severalmodelvariationsarepresente

8、dandinastaticenvironmentonly.Orioloetal.[39],[40]proposedathedifferencesarediscussed.Asexamples,theproposedmodelsmodelforreal-timemapbuild

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。