《lei三重积分》PPT课件

《lei三重积分》PPT课件

ID:39358200

大小:1.18 MB

页数:36页

时间:2019-07-01

《lei三重积分》PPT课件_第1页
《lei三重积分》PPT课件_第2页
《lei三重积分》PPT课件_第3页
《lei三重积分》PPT课件_第4页
《lei三重积分》PPT课件_第5页
资源描述:

《《lei三重积分》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三节三重积分第八章(TripleIntegrals)一、三重积分的概念二、三重积分的计算三、小结与思考练习7/19/20211一、三重积分的概念类似二重积分解决问题的思想,采用引例:设在空间有限闭区域内分布着某种不均匀的物质,求分布在内的物质的可得“分割,近似求和,求极限”解决方法:质量M.密度函数为7/19/20212存在,称为体积元素,若对作任意分割:任意取点则称此极限为函数在上的三重积分.在直角坐标系下常写作三重积分的性质与二重积分相似.性质:例如下列“乘中值定理.在有界闭域上连续,则存在使得V为的体积,积和式”极限记作定义设7/19/20213二、三重积分的计算1

2、.利用直角坐标计算三重积分方法1.投影法(“先一后二”)方法3.截面法(“先二后一”)方法2.三次积分法先假设连续函数并将它看作某物体通过计算该物体的质量引出下列各计算最后,推广到一般可积函数的积分计算.的密度函数,方法:7/19/20214如图,方法1.投影法(“先一后二”)注意7/19/20215该物体的质量为细长柱体微元的质量为微元线密度≈记作7/19/20216投影法设区域利用投影法结果,把二重积分化成二次积分即得:方法2.三次积分法7/19/20217解7/19/202187/19/20219其中为三个坐标所围成的闭区域.解:面及平面例2.计算三重积分7/19/202110方

3、法3.截面法(“先二后一”)的一般步骤:7/19/202111为底,dz为高的柱形薄片质量为该物体的质量为面密度≈记作7/19/202112例3.计算三重积分òòòWzdxdydz,其中W为三个坐标面及平面1=++zyx所围成的闭区域.7/19/202113解7/19/202114原式7/19/202115当被积函数在积分域上变号时,因为均为非负函数根据重积分性质仍可用前面介绍的方法计算.7/19/202116方法1.“先一后二”方法3.“先二后一”方法2.“三次积分”具体计算时应根据三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择.小结:三重积分的计算方法7/19/2

4、02117就称为点M的柱坐标.直角坐标与柱面坐标的关系:坐标面分别为圆柱面半平面平面2.利用柱面坐标计算三重积分7/19/202118因此其中适用范围:1)积分域表面用柱面坐标表示时方程简单;2)被积函数用柱面坐标表示时变量互相分离.如图所示,在柱面坐标系中体积元素为7/19/202119例5.利用柱面坐标计算三重积分,是由曲面与平面所围成的闭区域。解:闭区域可表示为于是其中7/19/202120例6.计算三重积分解:在柱面坐标系下所围成.与平面其中由抛物面原式=7/19/202121其中为由例7.计算三重积分所围解:在柱面坐标系下及平面柱面成半圆柱体.7/19/202122就称为点

5、M的球坐标.直角坐标与球面坐标的关系坐标面分别为球面半平面锥面3.利用球坐标计算三重积分7/19/202123因此有其中适用范围:1)积分域表面用球面坐标表示时方程简单;2)被积函数用球面坐标表示时变量互相分离.如图所示,在球面坐标系中体积元素为7/19/202124例8.求半径为a的球面与半顶角为的内接锥面所围成的立体的体积.解:在球坐标系下空间立体所占区域为则立体体积为7/19/202125解:在球面坐标系下所围立体.其中与球面例9.计算三重积分7/19/202126解知交线为综合练习7/19/2021277/19/2021287/19/2021297/19/2021307/19

6、/202131内容小结积分区域多由坐标面被积函数形式简洁,或坐标系体积元素适用情况直角坐标系柱面坐标系球面坐标系变量可分离.围成;7/19/202132作业习题8-3P155-1562;7(1);8(2);9(2)7/19/202133思考练习1.将用三次积分表示,其中由所提示:六个平面围成,7/19/202134计算提示:利用对称性原式=奇函数2.设7/19/202135其中解:利用对称性3.计算7/19/202136

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。