欢迎来到天天文库
浏览记录
ID:39267521
大小:1.19 MB
页数:33页
时间:2019-06-29
《数值计算方法绪论》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数值计算方法第0章课程介绍什么是数值计算方法?本课程主要内容数值计算方法重要性数值计算方法特点本课程要求程序设计上机计算近似结果输出实际问题建立数学模型设计高效、可靠的数值方法什么是数值计算方法?数值计算方法是一种研究并解决数学问题的数值近似解方法。什么是数值计算方法?1.理论性:数学基础数值计算方法特点2.实践性:上机实习数值计算方法的重要性1.科学与工程计算是20世纪最重要的科学进展之一。2.世界科学活动的三种主要手段和方式:数值计算,理论研究和物理实验三足鼎立。3.计算性科学分支:计算物理,计算生物学,计算地质学,计算材料学
2、等。4.…本课程主要内容1.非线性方程求根http://baike.baidu.com/view/32308.htm2.线性方程组求解3.插值和逼近4.数值积分5.特征值计算6.常微分方程数值解法本课程要求教材:李维国、同登科,数值计算方法(第二版),中国石油大学出版社,2008。2.学时:80(理论)+16(上机)=963.课程评分办法:75(期末考试成绩)+25(上机+作业)=1004.公共信箱:mathncm@126.comshenshuqian(密码)5.勤奋,不迟到,按时高质量完成作业。第1章绪论误差计算机的数系结构误差
3、分析的方法和原则一、误差的来源1、从实际问题中抽象出数学模型——模型误差2、通过观测得到模型中某些参数(或物理量)的值——观测误差3、数学模型与数值算法之间的误差求近似解——方法误差(截断误差)4、由于机器字长有限,原始数据和计算过程会产生新的误差——舍入误差误差二、误差分析的基本概念设为真值(精确值),为的一个近似值称为的绝对误差,简称误差。绝对误差可正可负;1.定义:绝对误差限:例:实际计算时,相对误差通常取2.定义:称为近似值的相对误差相对误差限:用相对误差衡量近似程度更合理。举例。3.定义:(有效数字)例:3位6
4、位若近似值与准确值的误差绝对值不超过某一位的半个单位,该位到的第一位非零数字共有位,称有位有效数字。规格化形式4.定义:(有效数字等价定义)设近似值若,则称具有位有效数字。例:问:有几位有效数字?请证明你的结论。证:0.2300有4位有效数字,而00023只有2位有效数字。12300如果写成0.123105,则表示只有3位有效数字。数字末尾的0不可随意省去!若的每一位都是有效数字,则称是有效数。特别地,经“四舍五入”得到的数均为有效数故有4位有效数字,精确到小数点后第3位。则至少具有k位有效数字。5.定理:将近似值表示为,若
5、有k位有效数字,则;反之,若,定理5说明了有效数字与相对误差限的关系.例:为使的相对误差小于0.001%,至少应取几位有效数字?解:假设*取到n位有效数字,则其相对误差上限为要保证其相对误差小于0.001%,只要保证其上限满足已知a1=3,则从以上不等式可解得n>6log6,即n6,应取*=3.14159。有限个输入数据与有限个输出数据之间函数关系的一个明确无歧义的描述,即输入与输出的都是数值的数学问题。例:一阶微分方程初值问题求函数解析表达式数学问题求函数在某些点的近似函数值数值问题三、数值算法复杂性及稳定性1.问:什
6、么是数值问题?如线性方程组求解和二次方程求根。“离散化”是将非数值问题的数学模型化为数值问题的主要方法,这也是计算方法的任务之一。一个算法如果输入数据有扰动(即误差),而计算过程中舍入误差不增长,则称此算法是数值稳定的,否则此算法就称为数值不稳定的。3.定义:(数值稳定性)对数学问题本身如果输入数据有微小扰动,引起输出数据(即问题真解)的很大扰动,这就是病态问题。4.定义:(病态问题)病态问题是由数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。2.数值方法的计算复杂性(时
7、间和空间)记为????!!!Whathappened?!例(稳定性):计算公式一:递归计算可得:考察第n步的误差造成这种情况的是不稳定的算法.迅速积累,误差呈递增趋势。初始的小扰动公式二:方法:先估计一个IN,再反推要求的In(n<8、到的误差分别为(1)误差分析的方法和原则(避免两近似数相减)(避免大数除以小数)(2)对于函数y=f(x),若用x*取代x,将对y产生什么影响?分析:e(y*)=f(x*)f(x)x*与x非常接近时,则有:注:称为放大缩小因子或绝对误差条件数。相
8、到的误差分别为(1)误差分析的方法和原则(避免两近似数相减)(避免大数除以小数)(2)对于函数y=f(x),若用x*取代x,将对y产生什么影响?分析:e(y*)=f(x*)f(x)x*与x非常接近时,则有:注:称为放大缩小因子或绝对误差条件数。相
此文档下载收益归作者所有