欢迎来到天天文库
浏览记录
ID:39221160
大小:1.46 MB
页数:19页
时间:2019-06-27
《Finite-volume hyperbolic 4-manifolds that》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、DifferentialGeometryanditsApplications10(I999)205-223205North-HollandFinite-volumehyperbolic4-manifoldsthatshareafundamentalpolyhedron*DubravkoIvanSiCllr?i~ervit~ofOklrrhoma.MathemuticsDepartment,Normun,OK730/Y-03/5.USA2、mefunctionforhyperbolicmanifoldsofdimension>3isfinite-to-one.Weshowthatthenumberofnonhomeomorphichyperbolic4-manifoldswiththesamevolumecanbemadearbitrarilylarge.Thisisdonebyconstructingasequenceoffinite-sidedfinite-volumepolyhedrawithside-pairingsthatyieldmanifolds.Infact,weshowthatarbitrarilymanyn3、onhomeomorphichyperbolic4-manifoldsmayshareafundamentalpolyhedron.Asaby-productofourexamples,wealsoshowinaconstructivewaythatthesetofvolumesofhyperbolic4-manifoldscontainsthesetofevenintegralmultiplesof4n2/3.Thisishalfthesetofpossiblevaluesforvolumes,whichistheintegralmultiplesof4rr/3duetotheGauss-4、BonnetformulaVol(M)=4n2/3x(M).Ke~word.v:Hyperbolic4-manifolds,volumefunction,Poincarespolyhedrontheorem,embeddedtotallyFe-odesichypersurfaces.Gauss-Bonnetformula,setofvolumes.iUSc./cl.v.siiir,ritiorr:5IMIO.5IM25.0.IntroductionandstatementofresultsTheoriginalaimofresearchthatproducedthispaperwastoco5、nstructnoncompacthyperbolic4-manifoldsbymeansofside-pairingsofpolyhedra.Previousexamplesofhyperbolicmanifoldswithdimensionhigherthanthreewererestrictedtoconstructionsviaarithmeticgroups(see,forexample,[2,13]),orviainterbreedingarithmeticgroupstogetnonarithmeticones]9]andtherewasonlyone(compact)exam6、pleusingside-pairings,thatofDavisin[5].Wewereabletoproduceanumberofexamplesofside-pairingsofhyperbolic4-polyhedraandget,inaddition.newinformationaboutvolumesofhyperbolic4-manifolds.Furtherresearchledtoconsiderationofembedabilityofthesemanifoldsascomplementsofsurfacesincompact4-manifolds-wedealwitht7、hisin]I1J.Itisknown(see1171)thatforeveryconstantc;>0thereareonlyfinitelymanycompletenonhomeomorphichyperbolicn-manifoldswithvolume
2、mefunctionforhyperbolicmanifoldsofdimension>3isfinite-to-one.Weshowthatthenumberofnonhomeomorphichyperbolic4-manifoldswiththesamevolumecanbemadearbitrarilylarge.Thisisdonebyconstructingasequenceoffinite-sidedfinite-volumepolyhedrawithside-pairingsthatyieldmanifolds.Infact,weshowthatarbitrarilymanyn
3、onhomeomorphichyperbolic4-manifoldsmayshareafundamentalpolyhedron.Asaby-productofourexamples,wealsoshowinaconstructivewaythatthesetofvolumesofhyperbolic4-manifoldscontainsthesetofevenintegralmultiplesof4n2/3.Thisishalfthesetofpossiblevaluesforvolumes,whichistheintegralmultiplesof4rr/3duetotheGauss-
4、BonnetformulaVol(M)=4n2/3x(M).Ke~word.v:Hyperbolic4-manifolds,volumefunction,Poincarespolyhedrontheorem,embeddedtotallyFe-odesichypersurfaces.Gauss-Bonnetformula,setofvolumes.iUSc./cl.v.siiir,ritiorr:5IMIO.5IM25.0.IntroductionandstatementofresultsTheoriginalaimofresearchthatproducedthispaperwastoco
5、nstructnoncompacthyperbolic4-manifoldsbymeansofside-pairingsofpolyhedra.Previousexamplesofhyperbolicmanifoldswithdimensionhigherthanthreewererestrictedtoconstructionsviaarithmeticgroups(see,forexample,[2,13]),orviainterbreedingarithmeticgroupstogetnonarithmeticones]9]andtherewasonlyone(compact)exam
6、pleusingside-pairings,thatofDavisin[5].Wewereabletoproduceanumberofexamplesofside-pairingsofhyperbolic4-polyhedraandget,inaddition.newinformationaboutvolumesofhyperbolic4-manifolds.Furtherresearchledtoconsiderationofembedabilityofthesemanifoldsascomplementsofsurfacesincompact4-manifolds-wedealwitht
7、hisin]I1J.Itisknown(see1171)thatforeveryconstantc;>0thereareonlyfinitelymanycompletenonhomeomorphichyperbolicn-manifoldswithvolume
此文档下载收益归作者所有