综合与实践平面图形的镶嵌

综合与实践平面图形的镶嵌

ID:39197494

大小:165.50 KB

页数:3页

时间:2019-06-26

综合与实践平面图形的镶嵌_第1页
综合与实践平面图形的镶嵌_第2页
综合与实践平面图形的镶嵌_第3页
资源描述:

《综合与实践平面图形的镶嵌》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人工作者湘教版八年级数学下册综合与实践平面图形的镶嵌教学内容:平面图形的镶嵌,镶嵌的条件。教学目标:平面图形的镶嵌,镶嵌的条件,通过探究正三角形、正方形、正六边形乃至任意三角形、四边形能镶嵌平面的理由,以及多种正多边形能铺满地面的理由,并能运用这几种图形进行简单的镶嵌设计,发展合情推理的能力,运用数学知识解决问题的能力(形成解决问题的策略)。教学重难点:重点:理解平面镶嵌的概念,探究用一种正多边形能够镶嵌的规律.难点:通过数学实验发现用正多边形镶嵌的规律.导学过程:知识回顾:教师:1、学生分组:4人2、镶嵌课件(搜集古今中外镶嵌实物图片).3、若干个彩色的全等的正三角形、正方

2、形、正五边形、正六边形、任意三角形、任意四边形。学生:1、每小组准备若干个彩色的全等的正三角形、正方形、正五边形、正六边形、任意三角形、任意四边形;2、搜集、了解相关镶嵌知识.情景导入:(课件展示)老师:同学们是否觉得很奇怪,老师今天怎么对这个艺术家感兴趣了。告诉大家他可不是一般的画家,他是一个将艺术与数学融合一起的画家,也因此享誉世界。下面我们一起来欣赏一下他的作品。(学生欣赏图片)老师:这些图案美不美?学生:美!老师:它们有什么共同点?我们挑一幅赏析一下。这幅图案是由哪些基本图形铺砌而成的?它们在拼接的时候有什么特点?(解释什么叫拼接点,为下面服务)(学生各抒己见)平面镶

3、嵌概念提出:象这样,用一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,在数学中叫做平面图形的密铺。又称作平面图形的镶嵌。老师:数学来源于生活,那么生活中有没有镶嵌现象呢?大家找找看。(学生找生活实例,如果学生回答的好,给予“你真是个有心人”···评价。)(展示图片)简单介绍蜂巢的知识让学生体会到自然界中,也蕴含着无穷的数学奥妙呢!老师:只要我们注意观察,就会发现平面镶嵌在生活中处处存在。今天我们就从数学的角度来探索平面图形的镶嵌.(板书:19.4多边形的镶嵌)新知探究:探究一、探索用同一种正多边形镶嵌的规律人工作者湘教版八年级数学下册老师:是不是任意的多边形都

4、可以通过镶嵌形成另一幅漂亮的图案呢?我们先来探索这个问题:“用若干个完全相同的等边三角形能否进行构成镶嵌图形?”学生四人为一小组,动手拼一拼。(学生动手实践得出正三角形能够进行密铺)老师:正三角形为什么可以铺成一个平面?(学生说理由,一般学生不会从拼接点处去考虑。可将图形分离一部分,引导学生看某个拼接点处的特点。)让学生得到“正三角形的每个内角都为60°,把六个角拼到一起就在这个拼接点处形成了一个周角。”板书60°×6=360°老师:如果把上面问题中的正三角形分别换成正方形、正五边形、正六边形又怎么样呢?(学生动手拼)老师:通过操作你有什么发现?(学生得出正五边形不能镶嵌)老

5、师:为什么正五边形不能镶嵌,其它的三种正多边形可以镶嵌?这其中有什么规律?⑴填写表格,寻找规律结合刚才的活动填写表格,寻找规律.名称在一个顶点处的度数和能否镶嵌正三角形正四边形正五边形正六边形你发现的规律:⑵分析表格,得出结论(分析表格可得到:正三角形、正四边形、正六边形的内角度数分别是60°、90°、120°,它们都是360°的约数,说明在一个顶点处有整数个这样的正多边形镶嵌;而正五边形的内探究二、任意两种多边形的镶嵌老师:下面我们来看一个更具有挑战性的问题:“用若干个全等的任意三角形能否构成镶嵌图案?”猜猜看,下面动手试一试。(学生操作,教师巡回指导,实物投影)老师:为什

6、么可以镶嵌?(让学生自己分析,由上面的知识学生较容易得出:每个拼接点处有六个角,这六个角分别是这种三角形的内角和的两倍,也就是它们的和为360º。)老师:你们在操作的过程中遇到了什么问题?(学生说出自己的困惑,及如何通过合作解决的。最后得出拼图时不仅要考虑角的问题,还要考虑到要能继续拼下去,那么相等的边必须重合在一起。教师可从学生中找个反例给学生看看)老师:如果换成若干个任意四边形呢?让学生先猜一下再动手拼。(分析过程都有学生完成)老师:通过以上探索同学们议一议“能镶嵌的图形在一个拼接点处有什么特点?”(几个图形的内角拼接在一起时,其和等于360º,并使相等的边互相重合。)探

7、究三、探索用不同正多边形镶嵌的规律人工作者湘教版八年级数学下册老师:镶嵌密铺是丰富多彩的,生活中我们经常看到这样的图案。(展示图片)漂亮吗?(带学生一起欣赏一些多边形组合镶嵌的图片)老师:那是不是所有的多边形都可以组合起来镶嵌呢?我们看下面这个问题:在边长相等的正三角形、正方形、正六边形中,选择哪几种正多边形组合可以构成镶嵌?每种组合中各种图形需要几个?在边长相等的正三角形、正方形、正六边形中,选择哪几种正多边形组合可以构成镶嵌?每种组合中各种图形需要几个?知识梳理:1.通过本节课的学习你学到了哪些知识

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。