余弦度量与近拟余弦度量

余弦度量与近拟余弦度量

ID:39139951

大小:4.58 MB

页数:45页

时间:2019-06-25

余弦度量与近拟余弦度量_第1页
余弦度量与近拟余弦度量_第2页
余弦度量与近拟余弦度量_第3页
余弦度量与近拟余弦度量_第4页
余弦度量与近拟余弦度量_第5页
资源描述:

《余弦度量与近拟余弦度量》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AbstractFinslerGeometryincludingitsspecialcaseRiemannGeometryisanimpor-tantforwardsubjectinmodernmathematics.Roughlyspeaking,FinslerGeom-etryisakindofRiemannGeometrywhosemetrichasnolimitsofquadraticforms.IncludingRandermetricasitsspecialcase,(α,β)−metricisanimpor-tantkindofFinslermetric,a

2、ndthiskindofmetrichasbeenwidespreadappliedinphysicsandbiology.Inthisthesis,theauthorstudiesthegeometricalproper-βtiesoftwokindsofspecial(α,β)−metric,i.e,cosinemetricF=αcosandthenαPnβ)2i−2orderapproximatecosinemetricF=α(−1)i−1(α(n=2,3,······),wheren(2i−2)!pi=1α(x,y)=a(x)yiyjisaRiemannmetri

3、candβ(x,y)=b(x)yiisone-formonijiasmoothmanifoldM.Thesufficientandnecessaryconditionsforthemtobelo-callyprojectivelyflat,especiallyforcosinemetrictobeofisotropicS−curvaturehavebeendiscussedinthisthesis.Weconcludethatcosinemetricislocallypro-jectivelyflatifandonlyifαislocallyprojectivelyflatand

4、βisparallelwithrespecttoα,andthesameresultisobtainedfromthenorder(n≥3)approximatecosinemetric.Whilethesufficientandnecessaryconditionforthesecondorderapprox-β2imatecosinemetricF2=α(1−2α2)tobelocallyprojectivelyflatisweaker,weneedβisexact,r=τ[2(1−b2)α2+3β2]andGi=ηyi+τα2bi.Here,τ=τ(x)is00αasc

5、alarfunctionandη=η(x)yiisaone-formonthemanifoldM.Mainconclu-isionsareasfollows:βTheorem3.2OnsmoothmanifoldM,cosinemetricF=αcosislocallypro-αjectivelyflatifandonlyif(1)βisparallelwithrespecttoα,(2)αislocallyprojectivelyflat,i.e,αhasconstantsectionalcurvature.Theorem4.2OnsmoothmanifoldM,these

6、condorderapproximatecosinemet-β2ricF2=α(1−2α2)islocallyprojectivelyflatifandonlyifβisclosedandiv8¹v(1)r=τ[2(1−b2)α2+3β2],00(2)Gi=ηyi+τα2bi.αHere,τ=τ(x)isascalarfunctiononM,andη=η(x)yiisaone-formonM.iTheorem5.2OnsmoothmanifoldM,thenorderapproximatecosinemetricPnβ)2i−2F=α(−1)i−1(α(n=3,4,····

7、··)islocallyprojectivelyflatifandonlyifn(2i−2)!i=1(1)βisparallelwithrespecttoα,(2)αislocallyprojectivelyflat,i.e,αhasconstantsectionalcurvature.βTheorem6.1LetF=αcosbeacosinemetriconasmoothmanifoldMwithαdimensionnandn≥3.Thenthefollowingconditionsareequivalent:(a)Fisofi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。