欢迎来到天天文库
浏览记录
ID:39004995
大小:72.50 KB
页数:4页
时间:2019-06-23
《数学人教版七年级下册不等式的性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、教学设计9.1.2不等式的性质第一课时不等式的性质许镇镇中心初中陶金成教学目标知识与技能1.掌握不等式的性质2.2.辉根据不等式的性质解简单的不等式。过程与方法经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同情感、态度与价值观通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性。重难点重点理解并掌握不等式的性质难点正确应用不等式的性质解简单的不等式教学过程一、复习引入前面我们已经学习过等式的基本性质(提问)(1)等式
2、的两边都加上(或都减去)同一个数或同一个整式,等式仍然成立.(2)等式的两边都乘以(或除以)一个不为0的数,等式仍然成立猜想:不等式也具有同样的性质吗?二、探究新知合作交流1用不等号填空:(1)53;5+23+2;5+23+2;(2)24;2+14+1;2-34-3.自己再写一个不等式,分别在它的两边都加(或减)同一个正数或负数,看看有怎样的结果?与同桌互相交流,你们发现了什么规律?(一)不等式基本性质1一般地,不等式具有如下性质:不等式基本性质1不等式的两边都加上(或都减去)同一个数或(式),不等号的方向不变.即,如果a>b,那么
3、a+c>b+c,a-c>b-c合作交流2用不等号填空:(1)53;5×23×2;5÷23÷2.(2)24;2×34×3;2÷44÷4.自己再写一个不等式,分别在它的两边都乘(或除以)同一个正数,看看有怎样的结果?与同桌互相交流,你们发现了什么规律?(二)不等式基本性质2一般地,不等式还有如下性质:不等式基本性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变.即,如果a>b,c>0,那么ac>bc,>.合作交流3用不等号填空:(1)53;5×(-2)3×(-2);5÷(-2)3÷(-2).(2)24;2×(-3)4×(-3)
4、;2÷(-4)4÷(-4).自己再写一个不等式,分别在它的两边都乘(或除以)同一个负数,看看有怎样的结果?与同桌互相交流,你们发现了什么规律?(三)不等式基本性质3一般地,不等式还有如下性质:不等式基本性质3不等式的两边都乘(或除以)同一个负数,不等号的方向改变.即,如果a>b,c<0,那么ac5、是利用不等式的性质把不等式转化为x>a或x6、这个不等式的解集在数轴上的表示如图所示:075(4)为了使不等式-4x﹥3中的不等号的一边变为x,根据______________,不等式两边都除以____,不等号的方向______,得这个不等式的解集在数轴上的表示如图所示:-430四、课堂练习1.已知a”或“<”填空:(1)a+12b+12;(2)b-10a-10.2利用不等式的基本性质解不等式:(1)5>3+x;(2)2x<x+6.3.利用不等式的性质解下列不等式,并再数轴上表示.(1)x-5>-1;(2)-2x>3;(3)7x<6x-6五、课堂小结如果a>b,那么7、a+c>b+c,a-c>b-c不等式的基本性质1→如果a>b,c>0那么ac>bc,>不等式的基本性质2→不等式的基本性质应用→不等式的基本性质3如果a>b,c<0那么ac<bc,<→六、作业:第2题,第3题板书设计9.1.2不等式的性质不等式的基本性质1不等式的基本性质2不等式的基本性质3课外思考你能用不等式的基本性质判断下列说法的正误吗?(1)如果a>b,那么ac>bc.(2)如果a>b,那么ac>bc.(3)如果ac>bc,那么a>b.练一练用“>”或“<”填空:(1)已知a>b,则3a3b;(2)已知a>b,则-a-b;(38、)已知a
5、是利用不等式的性质把不等式转化为x>a或x6、这个不等式的解集在数轴上的表示如图所示:075(4)为了使不等式-4x﹥3中的不等号的一边变为x,根据______________,不等式两边都除以____,不等号的方向______,得这个不等式的解集在数轴上的表示如图所示:-430四、课堂练习1.已知a”或“<”填空:(1)a+12b+12;(2)b-10a-10.2利用不等式的基本性质解不等式:(1)5>3+x;(2)2x<x+6.3.利用不等式的性质解下列不等式,并再数轴上表示.(1)x-5>-1;(2)-2x>3;(3)7x<6x-6五、课堂小结如果a>b,那么7、a+c>b+c,a-c>b-c不等式的基本性质1→如果a>b,c>0那么ac>bc,>不等式的基本性质2→不等式的基本性质应用→不等式的基本性质3如果a>b,c<0那么ac<bc,<→六、作业:第2题,第3题板书设计9.1.2不等式的性质不等式的基本性质1不等式的基本性质2不等式的基本性质3课外思考你能用不等式的基本性质判断下列说法的正误吗?(1)如果a>b,那么ac>bc.(2)如果a>b,那么ac>bc.(3)如果ac>bc,那么a>b.练一练用“>”或“<”填空:(1)已知a>b,则3a3b;(2)已知a>b,则-a-b;(38、)已知a
6、这个不等式的解集在数轴上的表示如图所示:075(4)为了使不等式-4x﹥3中的不等号的一边变为x,根据______________,不等式两边都除以____,不等号的方向______,得这个不等式的解集在数轴上的表示如图所示:-430四、课堂练习1.已知a”或“<”填空:(1)a+12b+12;(2)b-10a-10.2利用不等式的基本性质解不等式:(1)5>3+x;(2)2x<x+6.3.利用不等式的性质解下列不等式,并再数轴上表示.(1)x-5>-1;(2)-2x>3;(3)7x<6x-6五、课堂小结如果a>b,那么
7、a+c>b+c,a-c>b-c不等式的基本性质1→如果a>b,c>0那么ac>bc,>不等式的基本性质2→不等式的基本性质应用→不等式的基本性质3如果a>b,c<0那么ac<bc,<→六、作业:第2题,第3题板书设计9.1.2不等式的性质不等式的基本性质1不等式的基本性质2不等式的基本性质3课外思考你能用不等式的基本性质判断下列说法的正误吗?(1)如果a>b,那么ac>bc.(2)如果a>b,那么ac>bc.(3)如果ac>bc,那么a>b.练一练用“>”或“<”填空:(1)已知a>b,则3a3b;(2)已知a>b,则-a-b;(3
8、)已知a
此文档下载收益归作者所有