数学人教版八年级上册探究等腰三角形的性质

数学人教版八年级上册探究等腰三角形的性质

ID:38983198

大小:141.00 KB

页数:5页

时间:2019-06-22

数学人教版八年级上册探究等腰三角形的性质_第1页
数学人教版八年级上册探究等腰三角形的性质_第2页
数学人教版八年级上册探究等腰三角形的性质_第3页
数学人教版八年级上册探究等腰三角形的性质_第4页
数学人教版八年级上册探究等腰三角形的性质_第5页
资源描述:

《数学人教版八年级上册探究等腰三角形的性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、13.3.1等腰三角形的性质教材分析这一节课主要学习等腰三角形①“等边对等角”及②“底边上的高、底边上的中线、顶角的平分线互相重合”的性质。本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判定的预备知识,还是证明角相等、线段相等及两条直线互相垂直的依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。学情分析在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,

2、他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。教学目标知识与能力目标能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。过程与方法目标经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形情感态度与价值观目标培养学生的观察能力,激发学生的好奇心和求知欲,养学习的自信心。教学重难点重点等腰三角形的性质及应用难点等腰三角形性质的建立教学策略与设计

3、说明本节课采取探究启发式教学。教学过程教学环节(注明每个环节预设的时间)教师活动学生活动设计意图一、温故知新活动1:请同学们回忆一下小学时候学过的有关等腰三角形的知识引入新课:等腰三角形回忆等腰三角形设计此约灯片,意在引入新课,同时也能引起学生认识需要,使之进入最佳学习状态.二、学习概念探索性质活动2:(一)等腰三角形的概念动动手,动动脑课本75页探索动手做一做ACBD1、给出等腰三角形的定义:两边相等的三角形是等腰三角形2、思考:(1)剪出的等腰三角形是轴对称图形吗?(2)把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。角形的性质吗?说一说你的猜想。(3

4、)由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想。(4)补充验证学生的猜想已知:△ABC中,AB=AC求证:∠ABC=∠ACB3、归纳得出等腰三角形的性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,

5、在△ABC中,AB=AC,作顶角∠学生能否用规范的数学语言说出自己的猜想.学生归纳性质,教师补充总结通过折纸的方法让学生猜想,鼓励学生用多种方法来验证他们的猜想并归纳出等腰三角形的概念和性质。BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.三、理清思路体验应用活动4:例题讲解:CBDA例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)设∠A=x,则∠BDC=∠A+∠ABD=2x,

6、从而∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,∴∠A=36°∠ABC=∠C=72°学生个别发言学生独立完成提醒学生注意使用“等边对等角”时,边与角的对应关系提醒学生注意“等边对等角”只能在同一个三角形中使用四、发散练习拓展提高活动5:应用当堂检测:1.如图,△ABC中,AB=AC,∠A=36°,则∠B=__________;2.如图,△ABC中,AB=AC,∠A=3∠B,则∠A=___________;3.等腰三角形一个底角为75°,它的另外两个角为_____________;4.等腰三角形一个角为40°,它的另

7、外两个角为_______________;学生完成后到黑板上板书讨论总结及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力,同时培养学生分类讨论的思想。启迪发散学生思维5.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是多少?思维拓展1、等腰三角形底边中点到两腰的距离相等吗?2、利用类似的方法,还可以得到等腰三角形中哪些线段相等?课堂小结2分钟活动6:师生共同小结1、知识点:等腰三角形的概念等腰三角形的性质2、注意:“等边对等角”只能在同一个三角形中使用.学生自己总结,教师进行补充归纳引导学生自己总结

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。