数学人教版八年级上册14.3.1 因式分解—提取公因式法

数学人教版八年级上册14.3.1 因式分解—提取公因式法

ID:38978581

大小:62.00 KB

页数:3页

时间:2019-06-22

数学人教版八年级上册14.3.1 因式分解—提取公因式法_第1页
数学人教版八年级上册14.3.1 因式分解—提取公因式法_第2页
数学人教版八年级上册14.3.1 因式分解—提取公因式法_第3页
资源描述:

《数学人教版八年级上册14.3.1 因式分解—提取公因式法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、14.3.1因式分解—提取公因式法知识与技能目标:了解因式分解的意义,会用提公因式法进行因式分解.过程与方法目标:经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法.情感与价值观目标:培养学生独立思考的习惯,同时又要培养大家合作交流意识.教学重点及难点:掌握寻找公因式(系数为最大公约数、相同字母或者式子最低次幂)的方法,并根据分配律把公因式提出来熟练地进行因式分解.教学过程设计(一).创设问题情境,引入新课:一块场地由三个矩形组成

2、,这些矩形的长分别为,,,宽都是,求这块场地的面积.解法一:S=×+×+×=++=2解法二:S=×+×+×=(++)=×4=2[师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.(二).新课讲授:1.公因式与提公因式法分解因式的概念.[师]若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连

3、接.ma+mb+mc=m(a+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?[生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.[师]由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后

4、形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解[例1]找3x–6xy的公因式.分析:[师]系数:3和-6最大公约数为:3相同字母为x且指数最小为1则公因式为:3x[例2]将下列各式分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来.[师]请大家互相交流.[生]解:(1)3x+6=3x+3×2=3(x+2);(2)7x2-21x=7x·x-7x·3=7

5、x(x-3);(3)8a3b2-12ab3c+abc=8a2b·ab-12b2c·ab+ab·c=ab(8a2b-12b2c+c)(4)-24x3-12x2+28x=-4x(6x2+3x-7)(三).归纳方法:.议一议[师]通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.[生]首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.4.想一想[师]大家总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?[生]

6、提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.(四).课堂练习:(一)随堂练习1.写出下列多项式各项的公因式.(1)ma+mb(m)(2)4kx-8ky(4k)(3)5y3+20y2(5y2)(4)a2b-2ab2+ab(ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m3-6m2=2m2(2m-3)(4)a2b-5ab+9b=b(a2-5a+9)(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)(6)-2x3+4x2-2x=-(2x3-4x

7、2+2x)=-2x(x2-2x+1)(二)补充练习把3x2-6xy+x分解因式[生]解:3x2-6xy+x=x(3x-6y)[师]大家同意他的做法吗?[生]不同意.改正:3x2-6xy+x=x(3x-6y+1)[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x·1,这样可知提出一个因式x后,另一个因式是1.(五).

8、课堂小结:1.掌握提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。