常见不定积分的求解方法

常见不定积分的求解方法

ID:38949033

大小:572.00 KB

页数:17页

时间:2019-06-21

常见不定积分的求解方法_第1页
常见不定积分的求解方法_第2页
常见不定积分的求解方法_第3页
常见不定积分的求解方法_第4页
常见不定积分的求解方法_第5页
资源描述:

《常见不定积分的求解方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、常见不定积分的求解方法的讨论马征指导老师:封新学摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。ThediscussionofcommonindefiniteintegralmethodofcalculatingMaZhengAbstracttherearefoursolutionsofindefinite

2、integrationinthisdiscourse:directintegration;exchangeableintegration;parcelintegration.Itdiscussedthefeasibilitywhichthesewaysinthesolutionofintegration,anditishelpfultosolveindefiniteintegrationquickly.KeywordsIndefiniteintegration,exchangeableintegration,pa

3、rcelintegration.170引言不定积分是《高等数学》中的一个重要内容,它是定积分、广义积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础,要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是常见不定积分的解法。不定积分的解法不像微分运算时有一定的法则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如(其中);;;等。这一方面体现了积分运算的困难,另一方面也推动了微

4、积分本身的发展。同时,同一道题也可能有多种解法,多种结果,所以,掌握不定积分的解法比较困难,下面将不定积分的各种求解方法分类归纳,以便于更好的掌握、运用。1不定积分的概念定义:在某区间I上的函数,若存在原函数,则称为可积函数,并将的全体原函数记为,称它是函数在区间I内的不定积分,其中为积分符号,称为被积函数,称为积分变量。若为的原函数,则:=+C(C为积分常数)。17在这里要特别注意,不定积分是某一函数的全体原函数,而不是一个单一的函数,它的几何意义是一簇平行曲线,也就是说:()和是不相等的,前者的结果是一个函数

5、,而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。性质:1.微分运算与积分运算时互逆的。注:积分和微分连在一起运算时:——————>完全抵消。——————>抵消后差一常数。2.两函数代数和的不定积分,等于它们各自积分的代数和,即:=±。3.在求不定积分时,非零数可提到积分符号外面,即:=(≠0)。在这里,给出两个重要定理:(1)导数为0的函数是常函数。(2)若两函数的导数处处相等,则两函数相差一个常数。以便于更好的解决一些简单的不定积分问题。上面将不定积分的概念以及性质做了简单的介绍,下面,我们

6、开始讨论不定积分的各种求解方法。1直接积分法(公式法)17从解题方面来看,利用不定积分的定义来计算不定积分是非常不方便的,利用不定积分的运算性质和基本积分公式从而直接求出不定积分,这种方法就是直接积分法(另称公式法)。下面先给出基本求导公式:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)。根据以上基本求导公式,我们不难导出以下基本积分表:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)。17下面举例子加以说明:例2.1:求解原式====注意:这里三个积分常数都是任意的

7、,故可写成一个积分常数。所以对一个不定积分,只要在最后所得的式子中写上一个积分常数即可,以后遇到这种情况不再说明。例2.2:求解原式===注:此处有一个技巧的方法,这里先称作“加1减1”法,相当于是将多项式拆分成多个单项式,然后利用基本积分公式计算,下面的例题中还会遇到类似的题型,遇到时具体讲解。直接积分法只能计算较简单的不定积分,或是稍做变形就可用基本积分表解决的不定积分,对于稍微复杂一点的不定积分便无从下手,所以,下面我们将一一讨论其他方法。1第一类换元法(凑微法)利用基本积分公式和积分性质可求得一些函数的原

8、函数,但只是这样远不能解决问题,如17就无法求出,必须将它进行变形,然后就可以利用基本积分公式求出其积分。如果不定积分用直接积分法不易求得,但被积函数可分解为,作变量代换,并注意到,则可将关于变量的积分转化为关于的积分,于是有如果可以求出,不定积分的计算问题就解决了,这就是第一类换元法(凑微分法)。注:上述公式中,第一个等号表示换元,最后一个等号表示回代.下面具体举例题加

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。