6.4多边形内角和

6.4多边形内角和

ID:38890790

大小:277.50 KB

页数:7页

时间:2019-06-20

6.4多边形内角和_第1页
6.4多边形内角和_第2页
6.4多边形内角和_第3页
6.4多边形内角和_第4页
6.4多边形内角和_第5页
资源描述:

《6.4多边形内角和》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第六章平行四边形4.多边形的内角和与外角和(一)郑州市第七十六中学王艳芳一、教材分析本节内容是北师大版义务教育教科书八年级下册第六章《平行四边形》第5节“多边形的内角和与外角和”第1课时,它是多边形相关知识的拓展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和同时又为下一课时多边形的外角和做铺垫。通过这节课的学习,可以培养学生积极参与的习惯及探索与归纳能力。二、学情分析学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求

2、内角和,这为本节课的学习打下了基础。因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法,但是,学生对把多边形转化成三角形这种化归思想的理解和应用还存在一定的困难。尽管如此,由于在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到了一定的训练,通过本节课的学习,这一方面的能力将会得到进一步的提高,学生将会轻松、愉快地完成本节课的学习任务。三、教学任务分析本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边

3、形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.课标相关要求:根据《课程标准》2011版要求:了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。学习目标:(1)通过测量、类比、推理等数学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发

4、展推理能力和语言表达能力。(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。(3)通过探索多边形内角和公式,让学生经历从实验几何过渡到论证几何的过程。[来源:学§科四、教学过程分析一、复习提问,引入新课问题1:如图1-1三角形三个内角的和等于多少度?问题2:如图1-2、1-3正方形、长方形的内角和等于多少度?问题3:如图1-4对于一般的四边形它的内角和是否也等于360°?你是怎么得到的?图1-1图1-2图1-3图1-4图1-1思路1:用量角器测量.思

5、路2:把四个角剪下来,可以拼成一个周角.思路3:如图2连接一条对角线,把四边形分割成两个三角形,两个三角形的内角和就是360°.图2设计意图:利用三角形、正方形、长方形这些熟悉的图形和已有的三角形和四边形知识入手,由特殊到一般,展开对一般四边形内角和的探索,通过对问题3的探究,利用转化的方法把四边形的内角和与三角形内角和有机的联系起来,不仅巩固了三角形的知识,也为接下来探究n边形的内角和起到了铺垫的作用.二、合作探究,获取新知活动一:五边形内角和问题1:健身广场中心的边缘是一个五边形(如图3),你能类

6、比求四边形内角和的方法求出它的五个内角的和吗?图3图4-1图4-2问题2:实验中学八年级学生小明和小亮利用下面的图形(图4)求出了五边形的五个内角的和,说说他们是怎么做的?还可以怎么做?1.五边形内角和等于540°.2.思路1:如图4-1小明连接对角线把五边形分割成三个三角形,所以五边形的内角和是180°×3=540°.思路2:如图4-2小亮在五边形内部取一点,连接这点和各个顶点,把五边形分割成五个三角形,五个三角形的内角和是180°×5=900°,然后再减去一个周角的度数,900°-360°=540

7、°.思路3:如图4-3在五边形的任意一边上取一点,则有180°×4=720°,然后再减去一个平角的度数,720°-180°=540°.思路4:如图4-4在五边形外取一点,则有180°×4=720°,然后再减去外部一个三角形内角和度数,720°-180°=540°.图4-3图4-4设计意图:通过类比对四边形内角和的探究,学生可以得出五边形内角和.主要目的是引导学生把五边形的内角和问题归化为三角形的内角和问题,对于问题2的探究注重学生之间的交流与探索,这对于接下来对n边形内角和的探究有很好的铺垫作用,同时

8、也激发了学生的学习乐趣.活动二:想一想(1)按照图4-1的方法,六边形能分成多少个三角形?…n边形呢?你能确定n边形的内角和吗?(n是大于或等于3的自然数)小组讨论后完成表格.(2)按照图4-2的方法再试一试.1.六边形可分成4个三角形,七边形可分为5个三角形…n边形可分为(n-2)个三角形,六边形内角和为720°,七边形内角和为900°…n边形内角和为(n-2)个三角形(n-2)·180°(n≥3).多边形边数分割后图形分成三角形的个数内角和规律311

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。