3.9 弧长及扇形的面积

3.9 弧长及扇形的面积

ID:38873354

大小:143.50 KB

页数:4页

时间:2019-06-20

3.9 弧长及扇形的面积 _第1页
3.9 弧长及扇形的面积 _第2页
3.9 弧长及扇形的面积 _第3页
3.9 弧长及扇形的面积 _第4页
资源描述:

《3.9 弧长及扇形的面积 》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第三章圆《弧长及扇形的面积》第一环节情境引入活动内容:在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的一端拴着一只狗.(1)这只狗的最大活动区域有多大?这个区域的边缘长是多少?(2)如果这只狗拴在夹角为120°的墙角,那么它的最大活动区域有多大?这个区域的边缘长是多少?活动目的:让学生观看生活中的弧和扇形,感受数学就在我们的身边,进而出示实际生活中的问题,引发学生的思考分析,激励学生自主的提出要研究的问题——弧长和扇形面积的问题,这样,学生带着问题开始新知识的探索.这样与实际相联系的问题,调动了学生观察思考的积极性,加深他们对几何图形

2、的理解和渴望探索新知识的求知欲.这就是我们本节课要来研究的问题(自然引出课题)实际教学效果:学生观察图片,阅读生活中的实际问题,自觉的提出弧长和扇形面积的计算,激发学生学习新知识的热情.将学生的注意力牢牢吸引至课堂,使学生认识到数学总是与现实问题密不可分.第二环节探索新知活动内容:活动1 探索弧长公式提出以下3问题:如图,某传送带的一个转动轮的半径为10cm.1.转动轮转一周,传送带上的物品A被传送多少厘米?2.转动轮转1°,传送带上的物品A被传送多少厘米?3.转动轮转n°,传送带上的物品A被传送多少厘米?活动目的:在这一环节,我从一个生活中的实际问

3、题出发,设计了3个小问题,让同桌的同学讨论分析,得出计算弧长的公式,明确探索一个新的知识要从学过的知识入手,找寻它们的联系,探究规律,得出结论.实际教学效果:教师通过提出问题,引导学生分析弧长和圆周长之间的关系,推导出n°的圆心角所对的弧长的计算公式.引导学生层层深入,逐步分析,尽量提问学生回答,相互补充,得出结论.学生体会从特殊-一般-特殊的认知过程,会推导出弧长公式.活动2探索扇形面积公式(1)观察与思考:怎样的图形是扇形?(2)扇形面积的大小到底和哪些因素有关呢?OBA圆心角弧半径半径扇形BAO(3)讨论如何求扇形的面积?圆心角是1°的扇形面积

4、是圆面积的多少?圆心角为n°的扇形面积是圆面积的多少?活动目的:关于扇形面积的计算,我首先借助幻灯片放映在圆中构建扇形的过程,让学生观察与思考,借助直观的图形来加深学生对扇形的认识,鼓励学生尝试着总结出扇形的概念,通过扇形的识别,提高学生的识图能力,培养学生自主获取知识的能力和语言表达能力.观察分析圆心角不同的扇形,总结出影响扇形面积的两个因素,进而探究扇形面积的计算公式.学生学以致用,在弧长公式的推导过程中,是由老师引导着分析;而扇形面积公式完全由学生自己推导,锻炼他们的探索新知识的能力,体验成功的快乐.实际教学效果:学生观察图片,理解扇形定义,并

5、能准确判断出什么样的图形是扇形.由观察图片和图形得出概念,记忆较深刻,对熟练判断是否为扇形铺平道路.让学生明白只有明确定义才能更好的学习更深一层次的知识的道理.而教师在引导学生在探索出弧长公式的基础上,学生自己尝试寻找探索方法,将扇形面积和圆的面积结合起来,分析得出扇形面积公式.让学生体会从特殊-一般-特殊的认知过程,会计算扇形面积.第三环节例题学习活动内容1:例1制作弯形管道时,需要先按中心计算“展开长度”再下料.试计算图所示的管道的展直长度,即弧AB的长(结果用含π的式子表示).活动内容2:想一想活动内容3:例2活动目的:通过练习,教师提问学生从

6、图中获得哪些信息,学生是否能熟练掌握弧长公式和扇形面积公式中半径、圆心角之间的换算关系.而对实际问题教师引导学生分步分析,分步计算.体会数学来源于生活并服务于生活.实际教学效果:学生刚开始对公式不太熟悉,在完成练习过程中还是偶尔会看看公式,运算结果还是令人满意的.注意:在应用弧长公式l,扇形的面积公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.第四环节归纳总结活动内容:问题:比较扇形面积与弧长公式,你能用弧长表示扇形面积吗?活动目的:让学生在合作交流的基础上尝试推导出扇形面积和弧长之间的关系.学生尝试用更好的方法记忆公式

7、.进一步加强学生合作交流和归纳总结能力,渗透类比思想.实际教学效果:扇形的面积的另一个计算公式与三角形的面积公式类似,只要把扇形看作是一个曲边三角形,把弧长看成是底,半径看成是高就可以了.这样对比,有助于学生记忆公式.实际上,把扇形的弧分的越来越小,作经过各分点的半径,并顺次连接各分点,得到越来越多的小等腰三角形,扇形的面积就是这些等腰三角形面积和的极限.同时教师可根据学生的情况来选择是否渗透极限的思想.第五环节巩固提升活动内容:随堂练习1、2活动目的:掌握并灵活运用公式.实际教学效果:这两个题要求学生具有较强的综合运用能力,第1题要求学生掌握弓形的

8、计算方法是用扇形的面积减去一个等腰三角形的面积,而这就涉及到三角函数的知识、勾股定理、垂径定理等相关的知识,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。