资源描述:
《九年级数学上册教学设计:23.1 锐角的三角函数》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第2课时 30°,45°,60°角的三角函数值教学目标【知识与技能】1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【过程与方法】1.培养学生把实际问题转化为数学问题的能力.2.培养学生观察、比较、分析、概括的能力.【情感、态度与价值观】经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性,感受数学说理的必要性、说理过程的严谨性,养成科学、严谨的学习态度.重点难点【重点】30°、45°、60°角的三角函数值.【难点】与特
2、殊角的三角函数值有关的计算.教学进程一、复习巩固教师多媒体课件出示:如图所示:在Rt△ABC中,∠C=90°.(1)a、b、c三者之间的关系是 ; (2)sinA= ,cosA= , tanA= ; sinB= ,cosB= , tanB= . (3)若∠A=30°,则= . 学生回答.二、共同探究,获取新知1.引出新知教师多媒体课件出示问题:为了测量一棵大树的高度,准备了如下测量工具:(1)含30°和60°两个锐角的三角尺;(2)皮尺.请你设计一个测量方案,测出一棵大树的高度.学生讨论,交
3、流想法.生:我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置B处,这位同学拿起三角尺,使她的视线恰好和斜边重合且过树梢C点,30°角的邻边和水平方向平行,用卷尺测出AB的长度、BE的长度,因为DE=AB,所以只需在Rt△CDA中求出CD的长度即可.师:在Rt△ACD中,∠CAD=30°,AD=BE,BE是已知的,设BE=a米,则AD=a米,如何求CD呢?生:含30°角的直角三角形有一个非常重要的性质:30°的角所对的直角边等于斜边的一半,即AC=2CD,根据勾股定理,得(2CD)2=CD2+a2.解得,CD=a.则树的高度即可
4、求出.师:我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°角的正切值,在上图中,tan30°==,则CD=atan30°,岂不简单!你能求出30°角的三个三角函数值吗?2.讲授新课.(1)探索30°、45°、60°角的三角函数值.师:观察一副三角尺,其中有几个锐角?它们分别等于多少度?生:一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°.师:sin30°等于多少呢?你是怎样得到的?与同伴交流.生:sin30°=.sin30°表示在直角三角形中,30°角的对边与斜边的
5、比值,与直角三角形的大小无关.我们不妨设30°角所对的边长为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边长等于2a.根据勾股定理,可知30°角的邻边长为a,所以sin30°==.师:cos30°等于多少?tan30°呢?生:cos30°==.tan30°===.师:我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?生:求60°角的三角函数值可以利用求30°角的三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,
6、很容易求得sin60°==,cos60°==,tan60°==.师生共同分析:我们一起来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.如图,设其中一条直角边为a,则另一条直角边也为a,斜边为a.由此可求得sin45°===,cos45°===,tan45°==1.教师多媒体课件出示: 三角函数角度α sinαcosαtanα30°45°160° 师:这个表格中的30°、45°、60°角的三角函数值需要熟记.另一方面,要能够根据30°、45°、60°角的三角函数值说出相应的锐角的大小.为了帮助大家记忆,我们观察表
7、格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?生:30°、45°、60°角的正弦值分母都为2,分子从小到大分别为、、,随着角度的增大,正弦值在逐渐增大.师:再来看第二列的函数值,有何特点呢?生:第二列是30°、45°、60角的余弦值,它们的分母也都是2,而分子从小到大分别为、、,余弦值随角度的增大而减小.师:第三列呢?生:第三列是30°、45°、60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan45°=1比较特殊.师:很好!掌握了上述规律,记忆就方便多了.下面同桌之间可互相检查一下对
8、30°、45°、60°角的三角函数值的记忆情况.相信同学们一定会做得很棒!(2)进一步探究锐角的三角函数值.如图,在Rt△ABC中,∠C=90°.∵sinA=,cosA=,sinB=,cosB