资源描述:
《3.1变化率与导数(上课用)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1变化率与导数问题1气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是如果将半径r表示为体积V的函数,那么思考:这一现象中,哪些量在改变?变量的变化情况?我们来分析一下:当V从0增加到1时,气球半径增加了气球的平均膨胀率为当V从1增加到2时,气球半径增加了气球的平均膨胀率为显然0.62>0.16随着气球体积逐渐变大,它的平均膨胀率逐渐变小思考?当空气容量从V1增加到V2时,气球的平均膨
2、胀率是多少?问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?hto请计算htoh(t)=-4.9t2+6.5t+10平均变化率定义:若设Δx=x2-x1,Δf=f(x2)-f(x1)则平均变化率为这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2同样Δf=Δy=f(x2)-f(x1)上述问题中的变化率可用式子表示称为函数f(x)从x1到x2的平均变化率1、式子中△x、△y的
3、值可正、可负,但△x的值不能为0,△y的值可以为02、若函数f(x)为常函数时,△y=0理解3、变式:1.函数的平均变化率2.求函数的平均变化率的步骤:(1)求函数的增量Δf=Δy=f(x2)-f(x1);(2)计算平均变化率观察函数f(x)的图象平均变化率表示什么?思考xyoBx2f(x2)Ax1f(x1)f(x2)-f(x1)x2-x1直线AB的斜率y=f(x)例(1)计算函数f(x)=2x+1在区间[–3,–1]上的平均变化率;(2)求函数f(x)=x2+1的平均变化率。(1)解:△y=f(-1)-f(-3)=4△x=-1-(-3
4、)=2(2)解:△y=f(x+△x)-f(x)=2△x·x+(△x)2练习3.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则Δy/Δx=()A.3B.3Δx-(Δx)2C.3-(Δx)2D.3-ΔxDA做两个题吧!1、已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则Δy/Δx=()A、3B、3Δx-(Δx)2C、3-(Δx)2D、3-ΔxD2、求y=x2在x=x0附近的平均变化率.2x0+Δx练习:5.过曲线y=f(x)=x3上两点
5、P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.小结:1.函数的平均变化率2.求函数的平均变化率的步骤:(1)求函数的增量Δf=Δy=f(x2)-f(x1);(2)计算平均变化率二.新课讲授1.瞬时速度△t<0时,在[2+△t,2]这段时间内△t>0时,在[2,2+△t]这段时间内当△t=–0.01时,当△t=0.01时,当△t=–0.001时,当△t=0.001时,当△t=–0.0001时,当△t=0.0001时,△t=–0.00001,△t=0.00001,△t=–0.000001,△t=0.00
6、0001,…………当Δt趋近于0时,平均速度有什么变化趋势?定义:函数y=f(x)在x=x0处的瞬时变化率是称为函数y=f(x)在x=x0处的导数,记作或,即由导数的定义可知,求函数y=f(x)的导数的一般方法:求函数的改变量2.求平均变化率3.求值一差、二比、三极限例1.求y=x2在点x=1处的导数.解:f(x)=x2–7x+15(0≤x≤8).计算x=2和x=6时的导数.根据导数的定义,所以,同理可得例1由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:在不致发生混淆时,导函数也简称导数.什么是导函数?由函数f(x)
7、在x=x0处求导数的过程可以看到,当x=x0时,f’(x0)是一个确定的数.那么,当x变化时,f’(x0)便是x的一个函数,我们叫它为f(x)的导函数.即:1.曲线的切线βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+Δx,y0+Δy)为P邻近一点,PQ为C的割线,PM//x轴,QM//y轴,β为PQ的倾斜角.PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.我们发现,当点Q沿着曲线
8、无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:这个概念:①提供了求曲线