智能卡尔曼滤波概述

智能卡尔曼滤波概述

ID:38794106

大小:129.72 KB

页数:8页

时间:2019-06-19

智能卡尔曼滤波概述_第1页
智能卡尔曼滤波概述_第2页
智能卡尔曼滤波概述_第3页
智能卡尔曼滤波概述_第4页
智能卡尔曼滤波概述_第5页
资源描述:

《智能卡尔曼滤波概述》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、IntelligentKalmanfilterfortrackingamanoeuvringtargetKalmanfilterisanidealrandomlinearadaptivefilter.ItneedstoclearlydefinetheMathematicalmodeltodescribetherelationshipbetweenoutputandinput,itisthemodelofthecontrollerofMathematicalmodelwhichworkswellwhilethefunctionbetweenoutputandinputisdete

2、rmined.Totheunknownenvironment,controllerofMathematicalmodelusuallydealwithitbyProbabilitystatistics(Conditionalmean,covariance),thelinearorMarkovmodelareoftenusedinpractice.buttherearesomeproblems:(1)ItishardtodescribetheUncertaintyclearlybyclassicaldatemodel.(2)Itishardtoaddtheknowledgefr

3、omdomainexpertstothesystem,itcanonlyuseittoestimateconditionsoftheinitialstateandcovariance.So,whenmanoeuvringtoturnortakingevasiveaction,thestandardKFcannotbeapplied,becausetheunknowntargetaccelerationduringthemanoeuvreappearsasextensiveprocessnoiseonthetargetmodel,andtheoriginalprocessnoi

4、sevariancecannotcoverit.Thetraditionalresearchmethodanditsshortcomingsatpresentareasfollows:1:Detectingthemanoeuvreandthentocopewithiteffectively.Examplesofthisapproachincludeinputestimation(IE)techniques,thevariabledimension(VD)filter,thetwo-stageKalmanestimator.shortcoming:thesetechniquesr

5、equireadditionaleffortsuchastheestimationanddetectionofacceleration,andthecompensationofthestateestimateorthetransitionbetweenthenon-manoeuvringfilterandthemanoeuvringfilterinordertodealwiththeunknowntargetmanoeuvres.2:describeingthemotionofatargetusingmultiplesub-filters.Thegeneralisedpseudo-

6、Bayesian(GPB)method,theinteractingmultiplemodel(IMM)method,andtheadaptiveinteractingmultiplemodel(AIMM)method[10]areincludedinthisapproach.shortcoming:Thesetechniquesalsoneedextraeffortsuchaspredefiningmultiplesub-filtersandupdatingthemodeltransitionprobability,inadditiontothelargecomputation

7、alloadimposedbyusingmultiplesub-filters.TheauthorofthispaperproposeaIKFofoptimizedfuzzysystembasedonGAmethod.Advantagesareasfollows:(1)UnliketheIEtechniqueandthesimilarmethods,theproposedIKFrequiresnoadditionaleffortforestimationanddetectionofthetargetma

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。