22.3实际问题与二次函数(建立坐标系解决问题)

22.3实际问题与二次函数(建立坐标系解决问题)

ID:38751400

大小:909.50 KB

页数:25页

时间:2019-06-18

22.3实际问题与二次函数(建立坐标系解决问题)_第1页
22.3实际问题与二次函数(建立坐标系解决问题)_第2页
22.3实际问题与二次函数(建立坐标系解决问题)_第3页
22.3实际问题与二次函数(建立坐标系解决问题)_第4页
22.3实际问题与二次函数(建立坐标系解决问题)_第5页
资源描述:

《22.3实际问题与二次函数(建立坐标系解决问题)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实际问题与二次函数建立平面直角坐系解决问题2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a>0时,抛物线开口向,有最点,函数有最___值,是;当a<0时,抛物线开口向,有最点,函数有最值,是_____。抛物线上小下大高低1.二次函数y=a(x-h)2+k的图象是一条,它的对称轴是,顶点坐标是.抛物线直线x=h(h,k)基础扫描3.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。当x=时,y的最值是__。4.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是。当x=时,函数有最___

2、值,是。5.二次函数y=2x2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最值,是。直线x=3(3,5)3小5直线x=-4(-4,-1)-4大-1直线x=2(2,1)2小1基础扫描课前练习已知抛物线的对称轴为y轴,且过(2,0),(0,2),求抛物线的解析式.解:设抛物线的解析式为y=ax2+k(a≠0)因为抛物线过(2,0),(0,2)所以k=2a=-0.54a+k=0k=2解析式为:y=-0.5x2+2探究一图中是抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?解一以

3、抛物线的顶点为原点,以抛物线的对称轴为轴,建立平面直角坐标系,如图所示.∴可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:∴当水面下降1m时,水面宽度增加了返回解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴

4、当水面下降1m时,水面宽度增加了∴可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)返回解三如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:∵抛物线过点(0,0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了此时,抛物线的顶点为(2,2)∴这时水面的宽度为:返回某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地

5、面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.探究二解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4.4∴C(0,4.4)设抛物线所表示的二次函数为∵抛物线过A(-2,0)∴抛物线所表示的二次函数为∴汽车能顺利经过大门.小结一般步骤:(1).建立适当的平面直角坐标系,并将已知条件转化为点的坐标;(2).合理地设出所求

6、的函数的表达式,并代入已知条件或点的坐标,求出关系式;(3).利用关系式求解实际问题.1.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.作业:如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?(1)卡车可以通过.提示:

7、当x=±1时,y=3.75,3.75+2>4.(2)卡车可以通过.提示:当x=±2时,y=3,3+2>4.xy-1-3-1-31313O变式练习2、你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高。1m2.5m4m1m甲乙丙丁oABCD解:由题意,设抛物线解析式为y=ax2+bx+1,把B(

8、1,1.5),D(4,1)代入得:丁xyo把x=2.5代入得y=1.625∴C点的坐标为(2.5,1.625)∴丁的身高是1.625米1m2.5m4m1m甲乙丙(0,1)(4,1)(1,1.5)ABCD3、如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。