欢迎来到天天文库
浏览记录
ID:38702512
大小:1.29 MB
页数:8页
时间:2019-06-17
《神经网络系统建模综述》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、神经网络系统建模综述一、人工神经网络简介1.1人工神经网络的发展历史人工神经网络早期的研究工作应追溯至本世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。50年代末,F·Rosenblat
2、t设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科
3、学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。1.2人工神经网络的工作原理人工神经网络是由大量处理单元广泛互连而成的网络结构,是人脑的抽象、简化和模拟。人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。人工神
4、经网络首先要以一定的学习准则进行学习,然后才能工作。所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。81.3人工神经网络的特性人工神经网络具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无导师学习,这时,只规定
5、学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。二、神经网络系统建模方法2.1基于人工神经网络的建模技术2.1.1正向建模正向建模是指训练一个神经网络表达系统正向动态的过程,这一过程建立的神经网络模型称为正向模型。在正向模型的结构中,神经网络与待辨识的系统并联,两者的输出误差用做网络的训练信号。显然,这是一个典型的有教师学习问题。实际系统作为教师,向神经网络提供算法所需的期望输出。当系统是被控对象或传统控制器时,神经网络一般采用多层前向网络的形式,可直接选用BP网络或它的各
6、种变形。而当系统为性能评价器时,则可选择再励学习算法,这时既可以采用具有全局逼近能力的网络,如多层感知器,也可选用具有局部逼近能力的网络,如小脑模型关节控制器等[2]。2.1.2逆向建模建立动态系统的逆模型,在神经网络控制中起着关键作用,并且得到了非常广泛的应用。其中比较简单的是直接逆建模法。直接逆建模也称为广义逆学习。从原理上说,这是一种最简单的方法。拟辨识的系统输出作为网络的输入,网络输出与系统输入比较,相应的输入误差用于训练,因此网络将通过学习建立系统的逆模型。但是如果所辨识的非线性系统是不可逆的,利用上述方法,将得到一个不正确的逆模型。因此,在建
7、立系统逆模型时,可逆性应该事先有所保证[3]。2.2利用人工神经网络求解问题的一般步骤在实际应用中,面对一个具体的问题时,首先需要分析利用神经网络求解问题的性质,然后根据问题特点,确定网络模型。最后通过对网络进行训练、仿真等,检验网络的性能是否满足要求。这一过程一般包括:(1)确定信息表达方式将领域问题及其相应的领域知识转化为网络可以接受并处理的形式,即将领域问题抽象为适合于网络求解的某种数据形式。(2)网络模型的确定8根据问题的实际情况,选择模型的类型、结构等。另外,还可在典型网络模型的基础上,结合问题的具体情况,对原网络进行变形、扩充等,同时还可以采
8、用多种网络模型的组合形式。(3)网络参数的选择确定网络输入/输出神经元的数目,如
此文档下载收益归作者所有