资源描述:
《《前言随机事》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、概率论与数理统计1《概率论与数理统计-全程指导》48学时48学时前八章(部分内容不讲)《概率论与数理统计》课程简介范玉妹等编范玉妹等编2课程简介概率论与数理统计是一门研究随机现象量的规律性的数学学科,是近代数学的重要组成部分,同时也是近代经济理论的应用和研究的重要数学工具。概率论属于纯数学的范畴,它是数理统计的理论基础,数理统计是应用数学的一个分支,是解决实际问题的给力的数学工具。气象统计,水文统计,生物统计,医学统计,金融统计,工程统计,教育统计。。。3课程简介历史上,概率论起源于赌博,三百多年前。。。现代的
2、赌博:彩票、抽奖、摸球、套圈、纸牌、麻将、保险、股市。。。人的一生都是与随机现象打交道。。。4课程简介总之,应用概率论的结果深入地分析研究资料,观察某种现象并发现其内在规律性,进而做出一定精确程度的判断和预测,将这些结果加以归纳整理,形成一定的数学模型,这就是数理统计研究的问题。5课程总知识结构图概率论与数理统计概率论数理统计基础应用概率定义随机变量抽样分布统计推断一维情形多维情形数字特征区间估计假设检验6在生活当中,经常会接触到一些现象:1)水加热到一百度沸腾2)早晨太阳从东方生起3)太阳西沉(自转)4)扔石
3、子会落地(引力)5)掷骰子(正反面)6)炮击目标(弹着点)课程简介1)2)3)4)确定性现象,5)6)随机现象7随机现象满足以下条件:课程简介a:个别试验结果不规律,试验前不知那个结果。b:大量重复试验又具有规律性。8有关要求与事项平时作业占总成绩的20%.地点:学103.答疑时间安排待定随机点名而无故缺席者,一次扣5分.每周一上课前将作业交齐;缺交两次(含两次)以上者不准参加期末考试;缺交一次作业扣5分;9第一章概率论的基本概念第二章随机变量及其分布第三章多维随机变量及其分布第四章随机变量的数字特征第五章大数
4、定律及中心极限定理第六章样本及抽样分布第七章参数估计第八章假设检验目录10E1:抛硬币观察正面H,反面T出现的情况。E2:抛一枚硬币三次,观察正面出现的次数。E3:抛一枚骰子,观察出现的点数。E4:观察375路车内的人数。E5:抛一枚硬币三次,观察正面、反面出现的情况。E6:在一批灯泡中任意抽取一只,测试它的寿命。§1随机试验(Experiment)第一章概率论的基本概念11这些试验具有以下特点:进行一次试验之前不能确定哪一个结果会出现;每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果。可以在相同的
5、条件下重复进行;称具备上面三个特点的试验为随机试验。第一章概率论的基本概念12一、样本空间(Space)定义将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。§2样本空间及事件样本空间的元素,即E的每个结果,称为样本点。第一章概率论的基本概念13S1:{H,T}S2:{0,1,2,3}S3:{1,2,3,4,5,6}S4:{0,1,2,3……}S6:{t
6、t0}S5:{000,001,010,011,100,101,110,111}要求:会写出随机试验的样本空间。E1:抛硬币观察正面H,反面T出现
7、的情况。E2:抛一枚硬币三次,观察正面出现的次数。E3:抛一枚骰子,观察出现的点数。E4:观察375路车内的人数。E5:抛一枚硬币三次,观察正面、反面出现的情况。E6:在一批灯泡中任意抽取一只,测试它的寿命。第一章概率论的基本概念14随机事件:称试验E的样本空间S的子集为E的随机事件,记作A,B,C等等;基本事件:由一个样本点组成的单点集;必然事件:样本空间S本身;不可能事件:空集。二、随机事件一个随机事件发生当且仅当集合中的某一个基本事件在试验中出现。第一章概率论的基本概念15例如:S3中事件A={2,4
8、,6}表示“出现偶数点”;事件B={1,2,3,4}表示“出现的点数不超过4”.第一章概率论的基本概念161)包含关系三、事件间的关系与运算SABA发生则B发生第一章概率论的基本概念17SAB2)和(并)事件事件发生当且仅当A,B至少发生一个.第一章概率论的基本概念183)积(交)事件SAB事件发生当且仅当A,B同时发生.第一章概率论的基本概念19考察下列事件间的包含关系:第一章概率论的基本概念204)差事件SABASAB发生当且仅当A发生B不发生.第一章概率论的基本概念215)互不相容6)对立事件SASBA请
9、注意互不相容与对立事件的区别!第一章概率论的基本概念22例如,在S6中事件A={t
10、t1000}表示“灯泡是次品”事件B={t
11、t1000}表示“灯泡是合格品”事件C={t
12、t1500}表示“灯泡是一级品”则表示“灯泡是合格品但不是一级品”;表示“灯泡是一级品”;表示“灯泡是合格品”.第一章概率论的基本概念237)随机事件的运算规律幂等律:交换律:结合律:分配律:DeMorgan