构造函数法在不等式证明中运用

构造函数法在不等式证明中运用

ID:38647149

大小:199.00 KB

页数:3页

时间:2019-06-17

构造函数法在不等式证明中运用_第1页
构造函数法在不等式证明中运用_第2页
构造函数法在不等式证明中运用_第3页
资源描述:

《构造函数法在不等式证明中运用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、构造函数法在不等式证明中运用不等式的证明历来是高中数学的难点,也是考察学生数学能力的主要方面。不等式的证明方法多种多样,根据所给不等式的特征,巧妙的构造适当的函数,然后利用一元二次函数的判别式、函数的奇偶性、单调性、有界性等来证明不等式,统称为函数法。本文通过一些具体的例子来探讨一下怎样借助构造函数的方法证明不等式。一、构造函数利用判别式证明不等式①构造函数正用判别式证明不等式在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时

2、要注意根的取值范围和题目本身条件的限制。例1.设:a、b、c∈R,证明:成立,并指出等号何时成立。解析:令⊿=∵b、c∈R,∴⊿≤0即:,∴恒成立。当⊿=0时,,此时,,∴时,不等式取等号。例2.已知:且,求证:。解析:消去c得:,此方程恒成立,∴⊿=,即:。同理可求得②构造函数逆用判别式证明不等式对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:由,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。例1.设且,求证:﹤6。解析:构造函数:=由,得⊿≤0,即⊿=.∴﹤6.例2.设且,求的最小值。解析:构造函数=由(当且仅当时取等号)

3、,得⊿≤0,即⊿=144-4()≤0∴当时,一、构造函数利用函数有界性证明不等式例3.设﹤1,﹤1,﹤1,求证:﹥-1.解析:令为一次函数。由于﹥0,且﹥0,∴在时恒有﹥0.又∵,∴﹥0,即:﹥0评注:考虑式中所给三个变量的有界性,可以视其为单元函数,转化为。二、构造函数利用单调性证明不等式例4.设,求证:﹥解析:设,当﹥0时,是增函数,又=﹥=,而,∴﹥,∴﹥故有:﹥例1.求证:当﹥0时,﹥。解析:令,∵﹥0,∴﹥0.又∵在处连续,∴在上是增函数,从而,当﹥0时,﹥=0,即:﹥成立。评注:利用函数单调性证明不等式和比较大小是常见的方法,特别是在引入导数后,单调性的应用将更加普遍。一、构

4、造函数利用奇偶性证明不等式例2.求证:﹤。解析:设-,====.所以是偶函数,其图象关于轴对称。当﹥0时,﹤0,故﹤0;当﹤0时,依图象关于轴对称知﹤0。故当时,恒有﹤0,即﹤评注:这里实质上是根据函数奇偶性来证明的,如何构造恰当的函数充分利用其性质是关健。由上述几种情况可以看出,能否顺利地构造函数利用其函数性质和使用数学思想来证明不等式,最重要的是要有扎实的基本功和多种思维品质,敢于打破常规,创造性地思维,才能独辟蹊径,使问题获得妙解。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。