early warning modeling and analysis based

early warning modeling and analysis based

ID:38614304

大小:2.18 MB

页数:10页

时间:2019-06-16

early warning modeling and analysis based_第1页
early warning modeling and analysis based_第2页
early warning modeling and analysis based_第3页
early warning modeling and analysis based_第4页
early warning modeling and analysis based_第5页
资源描述:

《early warning modeling and analysis based》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FoodControl78(2017)33e42ContentslistsavailableatScienceDirectFoodControljournalhomepage:www.elsevier.com/locate/foodcontEarlywarningmodelingandanalysisbasedonanalytichierarchyprocessintegratedextremelearningmachine(AHP-ELM):Applicationtofoodsafetya,ba,bca,b,

2、*ZhiQiangGeng,ShanShanZhao,GuangCanTao,YongMingHanaCollegeofInformationScience&Technology,BeijingUniversityofChemicalTechnology,Beijing100029,ChinabEngineeringResearchCenterofIntelligentPSE,MinistryofEducationinChina,Beijing100029,ChinacGuizhouAcademyofTesti

3、ngandAnalysis,Guiyang,Guizhou550002,ChinaarticleinfoabstractArticlehistory:Sincetheactualfoodsafetymonitoringdatahavecharacteristicsofhigh-dimension,complexity,Received27October2016discretenessandnonlinearproperties,itisdifficulttoaccuratelypredicttheriskofac

4、tualfoodinspectionReceivedinrevisedformprocess.Therefore,thispaperproposesapredictivemodelingapproachbasedonanalytichierarchy25January2017process(AHP)integratedextremelearningmachine(ELM)(AHP-ELM).TheproposedapproachutilizesAccepted19February2017theAHPmodelt

5、oobtaintheeffectiveprocesscharacteristicinformation(PCIs).ComparedwiththeAvailableonline20February2017analytichierarchyprocess(AHP)integratedtraditionalartificialneuralnetwork(ANN)approach,theAHP-ELMpredictionmodeliseffectivelyverifiedbyexecutingalinearcompari

6、sonbetweenallPCIsandKeywords:theeffectivePCIsthroughdailyinspectiondatasourcefromthesupervisionandinspectiondepartmentFoodsafetyExtremelearningmachinerepositoryofChinaqualitysupervisionsystem.Finally,thePCIsandthepredictionvalueareobtainedtoAnalytichierarchy

7、processprovidemorereliablefoodinformationandidentificationofpotentiallyemergingfoodsafetyissues.TheArtificialneuralnetworkproposedmethodisappliedtothefoodsafetyearlywarningandmonitoringsysteminChina.TheresultEarlywarningmodelingshowsthattheproposedmodeliseffec

8、tiveandfeasibleinprocessingthecomplexfoodinspectiondata.Meanwhile,itcanhelptoimprovethequalityoffoodproducts,ensurefoodsafetyandreducetheriskoffoodsafety.©2017ElsevierLtd.Allrightsreserved.1.Int

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。