欢迎来到天天文库
浏览记录
ID:38564924
大小:529.00 KB
页数:7页
时间:2019-06-15
《相似三角形的性质与判定复习课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章图形的相似4.探索三角形相似的条件(四)一、学情分析学生在学习了本章第一节后,掌握了线段的比、成比例线段的概念,比例的基本性质;也在之前的学习中掌握了一些基本的尺规作图方法.二、教材分析教学目标:1、知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点;2、通过找一条线段的黄金分割点,培养学生理解与动手能力.3、理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识教学与人类生活的密切联系.教学重点:了解黄金分割的意义并能运用.教学难点:找出黄金分割点和作黄金矩形.三、教学过程本
2、节课设计了六个环节:第一个环节:情境引入;第二个环节:导入新知;第三个环节:操作感知;第四个环节:练习拓展;第五个环节:课堂小结;第六个环节:布置作业.第一环节情境引入活动内容:展示课件,欣赏图片.第一组:建筑中的黄金分割文明古国埃及的金字塔,它的每面的边长与高之比接近于0.618.第二组:摄影中的黄金分割第三组:人体与黄金分割舞蹈演员的腿和身材的比例也近似于0.618的比值,看上去会感到和谐、平衡、舒适,有一种美的感觉.活动目的:通过建筑、摄影、艺术上的实例初步感受黄金分割,体会黄金分割在现实生活中的广泛应用和文化价值.第二环节导
3、入新知活动内容:在线段AB上,点C把线段分成两条线段AC和BC,如果,那么称线段AB被点C分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金比.其中.即.教师讲解,学生观察、思考、交流.注意事项:学生通过观察、思考、交流,教师引导、回答问题。因为学生尚未学习一元二次方程,所以无法理解比值为的理由,只需让学生了解这一事实即可.第三环节操作感知活动内容:1.提出问题:如何找到一条线段的黄金分割点?多数学生尝试画出1cm、2cm的线段,通过计算找到黄金分割点大概的位置.可以用这种方法大概的找到当线段长为a时黄金分割点的位置,但不能精
4、确地找到.2.展示课件,学生跟做.如果已知线段AB,按照如下方法画图:(1)经过点B作BD⊥AB,使;(2)连接AD,在DA上截取DE=DB;(3)在AB上截取AC=AE,则点C为线段AB的黄金分割点.3.提出问题:为什么点C为线段AB的黄金分割点?方法提示:设AB=2,分别求出AC和BC,并计算和,或计算AC2和BC•AB.活动目的:在于向学生介绍一种作黄金分割点的方法,同时巩固学生对黄金分割的认识.注意事项:教师操作,学生动手、独立思考,再与同伴交流完成。由于学生所学过的尺规作图方法有限,作图工具可以用三角尺和刻度尺.第四环节练
5、习与拓展活动内容:练习1.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20m,试计算主持人应走到离A点至少多少米处是比较得体的位置?(结果精确到0.1m).练习2.人体下半身(即脚底到肚脐的长度)与身高的比越接近0.618越给人以美感,遗憾的是即使是身材修长的芭蕾舞演员也达不到如此完美.某女士身高1.68m,下半身1.02m,她应选择多高的高跟鞋看起来更美丽?(精确到1cm)练习3.古希腊时的巴台农神庙,将图中的虚线表示的矩形,画成如图中的矩形ABCD,以矩形ABCD的宽为边在其内部作正方形AEFD,
6、那么,我们可以惊奇的发现提出问题:点E是AB的黄金分割点吗?矩形ABCD宽与长的比是黄金比吗?观看多媒体演示的内容,观察与思考、交流、讨论、解决问题.问题解决:由,可以得到即.所以点E是AB的黄金分割点.由证明可知,矩形ABCD的宽与长的比是黄金比.拓展练习:请用尺规作一个黄金矩形.练习4.采用如下方法也可以得到黄金分割点.如图,设AB是已知的线段,在AB上作正方形ABCD,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H就是AB的黄金分割点。任意作一条线段,用上述方法作出这条线段的黄金分割
7、点,你能说说这种作法的道理吗?观看多媒体演示的内容,观察与思考、交流、讨论,解决问题.问题解决:设AB=2,那么在,点H是AB的黄金分割点活动目的:前3个练习与本节课第一环节相呼应,在于展示黄金分割在人类生活中的作用,提高解题问题的能力.其中练习3还运用比例变形的一些技巧,体会比例基本性质的重要性.练习4在于向学生介绍另一种可以作黄金分割点的方法,同时进一步巩固黄金分割点的认识.注意事项:教师充分引导学生观察、思考、交流、讨论、解决问题。第五环节课堂小结活动内容:1.什么叫做黄金分割?黄金比是多少?2.一条线段有几个黄金分割点?3.
8、如何用尺规作线段的黄金分割点和黄金矩形?4.如何说明一个点是一条线段的黄金分割点?活动目的:鼓励学生结合本节课的学习过程,自觉总结,并自觉地应用到现实之中,逐步形成正确的数学观,培养学生的审美意识。注意事项:教师鼓励学生畅所欲言自己的
此文档下载收益归作者所有