2.反比例函数的图象与性质(二)

2.反比例函数的图象与性质(二)

ID:38563905

大小:373.00 KB

页数:7页

时间:2019-06-15

2.反比例函数的图象与性质(二)_第1页
2.反比例函数的图象与性质(二)_第2页
2.反比例函数的图象与性质(二)_第3页
2.反比例函数的图象与性质(二)_第4页
2.反比例函数的图象与性质(二)_第5页
资源描述:

《2.反比例函数的图象与性质(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六章反比例函数2.反比例函数的图象与性质(二)一、教学目标知识与技能目标:能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的主要性质.提高学生观察、分析能力和对图象的感知水平,领会研究函数的一般要求.过程和方法目标:让学生经历知识的探究过程,通过全面的观察和比较,积累数学方法和活动经验.逐步提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想.情感、态度和价值观目标:经历小组合作与交流活动,在质疑、追问、讨论中达成共识,发展合作能力和语言表达能力.二、教学重点、教学难点:重点:探索反比例函数的主要性质.难点:理解反比例函数性质的探索过程,从“数

2、”和“形”两方面综合考虑问题.三、教学过程第一环节:要点回顾内容:1.下列函数中,哪些是反比例函数?(1)(2)(3)(4)(5)2.你能想到的图象吗?它是什么形状?有什么特点?呢?教学策略:让学生找出题目中的反比例函数,运用空间想象能力,勾勒出反比例函数,的图象,并回顾每个函数的图象特点,在具体问题中加深对反比例函数定义以及图象的再认知.第二环节:设问探究内容1:试一试观察反比例函数,,的图象,你能发现它们的共同特征吗?(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x轴

3、相交吗?可能与y轴相交吗?为什么?教学策略:1.本环节的问题串,能有效的激发学生的思考热情,教师要善于运用启发性的语言,调动起学生思维的“小宇宙”.2.对于问题(2)、(3),教师要给学生留有充分的讨论、交流的时间和空间,让学生对图象进行细致的观察、类比、分析、交流,鼓励学生尽可能多的从图象中获取信息,并对信息进行分析、综合、概括、归纳,形成知识系统.3.在讨论、交流过程中,教师要指导学生勇于表达自己的想法,善于倾听他人的见解,让讨论在质疑、追问中进行.内容2:议一议考察当=-2,-4,-6时,反比例函数的图象,它们有哪些共同特征?教学策略:前面已经对时,反比例函数

4、图象的特征进行了分析,此处可以完全放手给学生,让学生通过类比,分析、归纳、概括出时图象的共同特征,教师只需进行适时的点拨.内容3:说一说你能尝试着说说反比例函数的图象有哪些共同特征吗?教学策略:1.在具体问题探究的基础上,让学生尝试着总结反比例函数的图象性质,从具体问题的分析进一步上升到理性的概括、归纳.2.鼓励学生大胆表述自己的想法,语言即使不规范、不完整,教师也要给以充分的肯定、表扬,在讨论、交流的基础上使语言更加完善.第三环节:运用巩固内容:练一练1.下列函数:①;②;③;④中(1)图象位于二、四象限的有;(2)在每一象限内,随的增大而增大的有;(3)在每一象

5、限内,随的增大而减小的有.2.若函数的图象在其象限内,随的增大而增大,则的取值范围是.3.点,都在反比例函数的图象上,若,则的大小关系是.变式:点,都在反比例函数的图象上,若,则的大小关系是.教学策略:1.留有充分的时间,让学生独立完成。在此基础上,小组交流,每名成员完成一个题目的讲解,力争让所有学生都积极地投入到知识的学习中.2.问题3的变式中蕴含分类讨论思想,教学中让学生独立思考,然后交流各自的想法,关注学生思维的广度和深度.第四环节:再探新知内容1:想一想在一个反比例函数图象任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为;过点Q分别作

6、x轴、y轴的平行线,与坐标轴围成的矩形面积为,与有什么关系?为什么?(1)让我们从具体的反比例函数开始考虑:此时,与有什么关系?为什么?(2)对于一般的反比例函数呢?教学策略:1.给出具体的反比例函数,让学生按题目要求,取点、构造矩形、,自主探究与之间的关系,然后由学生讲解,教师进行方法的总结和点拨.2.在前面探究的基础上,对于一般的反比例函数,可以完全放手给学生,充分利用小组成员间的合作,探究、归纳、概括出一般性的结论——矩形面积总等于,教师在整个过程中要给以适时的点拨和及时的总结.内容2:变一变在一个反比例函数图象任取两点P、Q,过点P作x轴的垂线,连接PO(O

7、为原点),与坐标轴围成的三角形面积为;过点Q作x轴的垂线,连接QO,与坐标轴围成的三角形面积为,与有什么关系?为什么?教学策略:将问题直接抛给学生,类比前面探究问题的方法,让学生来寻求解决问题的策略.第五环节:巩固提高1.如图,是反比例函数的图象在第一象限分支上的一个动点,随着自变量的增大,矩形的面积()A.不变B.增大C.减小D.无法确定2.如图,是反比例函数的图象在第一象限分支上的一个动点,过点P作连接PO,则△PAO的面积为.3.已知点、点都在反比例函数的图象上.过点P分别作两坐标轴的垂线,垂线与两坐标轴围成的面积是;过点Q分别作两坐标轴的垂线,垂线与两坐

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。