欢迎来到天天文库
浏览记录
ID:38562350
大小:49.50 KB
页数:6页
时间:2019-06-14
《勾股定理的几何应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、勾股定理的几何应用---教学设计龙江镇中心学校---赵刚教学目标知识目标:(1)了解勾股定理的作用是“在直角三角形中已知两边求第三边而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”.(2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算.过程性目标:(1)让学生亲自经历卷折圆柱.(2)让学生亲自经历卷折圆柱中认识到圆柱侧面展开图是一个长方形(矩形).(3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.原因分析:1.例1中学生因为其空间想像能力有限,很难想到蚂蚁爬行的路径是什么,为此通过制作圆柱模型解决难题.2.例2
2、中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维.教学突破点:突出重点的教学策略:通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,(三)、教学过程教学过程设计意图复习部分 复习练习,引出课题例1、在Rt△ABC中,两条直角边分别为3,4,求斜边c的值? 答案:c=5.例2、在Rt△ABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?答案:另一直角边的长是12.通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备小结:在上面两个小题中,我们应用了勾股定理:在Rt△ABC中,若∠C=90°,则c2=a2+b2 .加深定理的记
3、忆理解,突出定理的作用.新 课勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用.例1如图14.2.1,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 讲 解分析:蚂蚁实际上是在圆柱的半个侧面内爬行.大家用一张白纸卷折圆柱成圆柱形状,标出A、B、C、D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样.AC之间的最短距离是什么?根据是什么?(学生回答)根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ASBCD对角线AC之长.我们可以利用勾股定理计算出A
4、C的长。 通过动手作模型,培养学生的动手、动脑能力,解决“学生空间想像能力有限,想不到蚂蚁爬行的路径”的难题,从而突破难点. 由学生回答“AC之间的最短距离及根据”,有利于帮助学生找准新旧知识的连接点,唤起与形成新知识相关的旧知识,从而使学生的原认知结构对新知识的学习具有某种“召唤力”解如图,在Rt△ABC中,BC=底面周长的一半=10cm, 根据勾股定理得 (提问:勾股定理)∴AC===≈10.77(cm)(勾股定理).答:最短路程约为10.77cm.例2一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图14.2.3的某工厂,问这辆卡车能否通过该工厂的厂门?图14
5、.2.3分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图14.2.3所示,点D在离厂门中线0.8米处,且CD⊥再次提问,突出勾股定理的作用,加深记忆. AB,与地面交于H.小结 本节课我们学习了应用勾股定理来解决实际问题.在实际当中,长度计算是一个基本问题,而长度计算中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.课堂练习练习1.如图,从电杆离地面5米处向地面拉一条7米长的钢缆,求地面钢缆固定点A到电杆底部B的距离.(第1题)2. 现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边
6、同时扩大到原来的两倍,问斜边扩大到原来的多少倍?(四).作业:同步导学:第40-41页,勾股定理的应用 基础训练(1)本单元分两课时,第二课时讲解例3、例4,例4中同时用到勾股定理及逆定理,重点培养学生的演绎推理能力,具体设计略.
此文档下载收益归作者所有