欢迎来到天天文库
浏览记录
ID:38560949
大小:206.09 KB
页数:5页
时间:2019-06-14
《平行四边行性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1课时 平行四边形的性质(1)理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.重点平行四边形的定义,平行四边形对角、对边相等的性质以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.一、复习导入1.师:我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象.生:平行四边形.师:平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?生:自动伸缩门、挂衣服的简易衣钩等.师:你能总结出平行四边形的定义吗?(小组讨论,教师总结)(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:
2、平行四边形用符号“▱”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.①∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC(性质).2.探究.师:平行四边形是一种特殊的四边形,它除了具有四边形的性质和两组对边分别平行的性质外,还有什么特殊的性质呢?我们一起来探究一下.(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(2)猜
3、想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.如图,已知:▱ABCD.求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作四边形ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA(ASA).∴AB=CD,CB=AD,∠B=∠D.由上面的证明可知:∠1=∠3,∠2=∠4,∴∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形的性质1 平行四边形的对边相等.平
4、行四边形的性质2 平行四边形的对角相等.二、新课教授【例】教材第42页例1师:距离是几何中的重要度量之一,前面我们已经学习了点与点之间的距离、点到直线的距离.在此基础上,我们结合平行四边形的概念和性质,介绍平行线之间的距离.如图1,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.也就是说,两条平行线之间的任何两条平行线段都相等.从上面的结论可以知道,如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.两条平行线中,一条直线上任意一点到另一条直线的距离
5、,叫做这两条平行线之间的距离.如图2,a∥b,A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.三、巩固练习1.▱ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60° B.80° C.100° D.120°【答案】C2.在下列图形的性质中,平行四边形不一定具有的是( )A.对角相等B.对角互补C.邻角互补D.内角和是360°【答案】B3.在▱ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有( )A.4个B.6个C.8个D.9个【答案】D四、课堂小结1.两组对边
6、分别平行的四边形叫做平行四边形.2.平行四边形的性质:对边平行;对边相等;对角相等我在设计本节课时先让学生看图形,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作和教师演示旋转得到其他性质.因为本章课标明确要求学生能够规范地写出说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程.
此文档下载收益归作者所有