欢迎来到天天文库
浏览记录
ID:38516434
大小:2.87 MB
页数:77页
时间:2019-06-14
《让数学思想贯穿数学教学课堂》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、让数学思想贯穿于数学课堂教学沅陵县教师进修学校赵勇2015年12月26日课改的背景:现在还在中小学念书的孩子,未来可能从事的工作,有六成都还没有“被发明”。现在成人们帮孩子准备的工作能力,等到他们二十五岁时,工作可能已经消失。当代社会,科技推陈出新,知识的生产与淘汰,以十倍于过往的速度前进;媒体网络信息爆炸,价值多元而混乱……全世界都在寻找,传统教育体系该如何教导下一代面对一个完全无法“准备”的未来。创新决定价值:以iPod为例生产分工获得价值美国整体设计$229日本设计60G硬盘$67中国组装60G硬盘$3创造发明设计图纸生产加工中国的可持续发展之路
2、从中国制造到中国创造国家发展战略__2020基本实现教育现代化2007年10月:十七大确立“优先发展教育,建设人力资源强国”战略。2010年5月6日:课程改革的着力点第一浪更新理念第二浪改革课堂第三浪改善学习课程改革的核心是改善学习课程改革走到今天,不管是校长还是教师,聚焦点是在学生的学习。教育教学质量取决于学生的学习质量。提高学习质量是教师的主要工作。如何实现学生高质量学习成为教师研究和成长的主题。什么是高质量学习描述性定义:高水准的学习环境、高适配的学习方式、高价值的学习过程、高水平的学习结果、如果基本达到这四点,就是高质量学习。高质量学习属于科学
3、范式。义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。课程基本理念之一:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。课程总目标:知识技能、数学思考、问题解决、情感态度。总目标的这四个方面,不是相互独立和割裂的,而是一个密切联系、相互交融的有机整体。在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体实现,是学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展有着重要的意义。数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。《标准(201
4、1版)》关于课程的总目标中指出:“学会独立思考,体会数学的基本思想和思维方式。”把数学教学中的“双基”:基础知识与基本技能;发展为“四基”:基础知识、基本技能、基本思想和基本活动经验。即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。双基教学的历史贡献是巨大的,是我们国家教育的一个重要特色,这造就了我国的学生在一些测试中取得优异的成绩,同时也有人认为,这也让我们的学生成为全球最优秀的“学习者”。以往的教学只注重培养学生分析问题的能力和解决问题的能力。(创新能力得不到发展)缺乏发现问题的能力对学生而言
5、,发现问题更多地是指发现了书本上不曾教过的新方法、新观点、新途径以及知道了以前不曾知道的新东西。缺乏提出问题的能力将某些问题用数学语言表达出来的能力,核心在于数学的抽象、建模的相关能力。在发现问题的基础上提出问题,需要逻辑推理和理论抽象、概括。在错综复杂事物中抓住问题的核心进行条分缕析的陈述,并给出解决问题的建议,而不是一件简单的事情。提出问题的关键是能够认清问题、概括问题。将现实问题抽象出数学模型,这其中就运用了数学最基本的思想。何谓数学的基本思想?它的内涵是什么?这和以前常常提到的数学思想方法、数学方法的教学有什么联系和区别?中小学阶段的数学的基本
6、思想主要有哪些?如何体现在教材中?又应怎样渗透在教学中?一、基本数学思想概述1.数学思想的基本内涵谈到数学思想,人们很容易想到数学思想方法,而且容易将数学思想和数学思想方法发生混淆。通常认为,在中小学数学中,数学思想方法具体表现为三个不同的层次:解决具体问题的思想方法,如消元法、代入法、配方法和待定系数法等;逻辑方面的思想方法,如分析法、综合法、演绎法、归纳法和类比法等;一般性的数学思想方法,如公理化思想方法、数学模型化思想方法等。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思
7、想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。这些都是数学思想方法,而不是基本数学思想。基本数学思想应该是普适性的、一般性的、数学学科特有或者比较突出的思想。数学的基本思想,是数学产生和发展所必需依靠的、必须依赖的思想,同时也是学习过数学的人应当具备的思维特征,这些特征表现在人们分析和解决日常生活问题的过程当中。较为复杂的是有时数学思想、数学方法是交融在一起的。《标准(2011版)》将基本数学思想界定为抽象思想、推理思想和模型思想。当然审美的思想、分类的思想、无穷的思想等还有其他的数学思想。1)抽象思想,是指数学从现实的材料中
8、抽象出数量关系和空间形式进行研究,而不是研究现实世界的具体存在的事物本身。数学研究的是抽象了的
此文档下载收益归作者所有