《用二元一次方程组确定一次函数表达式》

《用二元一次方程组确定一次函数表达式》

ID:38461236

大小:101.00 KB

页数:5页

时间:2019-06-13

《用二元一次方程组确定一次函数表达式》_第1页
《用二元一次方程组确定一次函数表达式》_第2页
《用二元一次方程组确定一次函数表达式》_第3页
《用二元一次方程组确定一次函数表达式》_第4页
《用二元一次方程组确定一次函数表达式》_第5页
资源描述:

《《用二元一次方程组确定一次函数表达式》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第五章二元一次方程组7.用二元一次方程组确定一次函数表达式北师大版金凤区良田回民学校袁红梅联系电话:15009676875一、教学内容解析本节课主要是通过对作图像的方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图像解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。教学重点:用二元一次方程组确定一次函数表达式二、教学目标设置1.理解作函数图像的方

2、法与代数方法各自的特点.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.4.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力.三、学生学情分析学生的知识技能基础:学生已经熟练掌握了二元一次方程组的解法,同时在第四章也学习了一些确定一次函数表达式的基本方法,在上一节课又学习了二元一次方程组的图像解法,这些知识为本节课的学习作好了很好的铺垫.由于上节课的惯性,学生易在图像法上停留,因为图像法很直观,容易接受,因此本节课对代数方法的渗透应有一个循

3、序渐进的过程学生的活动经验基础:在相关知识的学习过程中,学生已经经历了在平面直角坐标系中通过图象法解二元一次方程组的解的活动,能简单理解数与形的结合解决简单的问题,感受到了数与形结合是一种重要的数学思想。同时学生在以往的学习过程中经历了很多合作学习的过程,具备了合作学习的经验,具备了一定合作交流的能力.四、教学策略分析根据学生已有学习基础,本节课的教学,采用启发引领和探究合作的学习方式.通过教师引领学生经历研究二元一次方程组确定一次函数的表达式的过程,认识探究的目标与策略,在探究的过程中逐渐完善研究的方法与手段.通过引例的分组探索,深刻理

4、解图像方法可以更直观、形象,但缺乏准确,用代数方法虽然准确,但不够形象和直观.通过两个例题的合作学习,让学生掌握利用二元一次方程组确定一次函数的表达式的具体的做法,让学生深刻理解解决这种问题的一般步骤与方法,使学生有知识迁移的基础.五、教学过程设计复习引入(1)二元一次方程组与一次函数有何联系?(2)二元一次方程组有哪些解法?【设计意图】回忆旧知,为本节课学习新的知识做铺垫.通过(1)问,体会函数和方程之间的联系——二元一次方程组的解是它们对应的两个一次函数图像的交点坐标;反之,两个一次函数图像的交点也是它们所对应的二元一次方程组的解;所

5、以方程问题可以转化为函数来解决,同样函数问题也可以通过方程问题来加以解决.为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.通过(2)问,让学生感受解决问题的方法的多样性和知识之间是互相联系的,为后面利用作图像方法和代数方法解决议一议的问题作铺垫.设计实际问题情境,导入新课A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?【设计意图】通过实际问题情

6、景,进一步加强函数与方程的联系,让学生在多种方法解决问题的思考和比较中体会作图像方法与代数方法各自的特点,为讲解待定系数法确定一次函数的解析式做好铺垫.同时理解知识之间有着广泛的联系.通过“小明的方法求出的结果准确吗?”自然过渡到本节课的主要内容。典型例题,探究一次函数解析式的确定例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式;(2)旅

7、客最多可免费携带多少千克的行李?解:(1)设,根据题意,可得方程组解该方程组,得所以(2)当x=30时,y=0.所以旅客最多可免费携带30千克的行李.例2 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.(1)分别写出当0≤x≤15和x>15时,y与x的函数关系式;x(吨)y(元)15203927O(2)若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨?解:(1)当0≤x≤15时,设,根据题意得,解得所以当0≤x

8、≤15时,;当x>15时,设根据题意,可得方程组解这个方程组,得所以当x>15时,.(2)当x=10时,代入中,得y=18.当y=51时,代入中,得x=25.【设计意图】通过两个例题的探索,让

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。