5.7用二元一次方程组确定一次函数

5.7用二元一次方程组确定一次函数

ID:38461080

大小:108.00 KB

页数:5页

时间:2019-06-13

5.7用二元一次方程组确定一次函数_第1页
5.7用二元一次方程组确定一次函数_第2页
5.7用二元一次方程组确定一次函数_第3页
5.7用二元一次方程组确定一次函数_第4页
5.7用二元一次方程组确定一次函数_第5页
资源描述:

《5.7用二元一次方程组确定一次函数》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第五章二元一次方程组7.用二元一次方程组确定一次函数表达式教案南华县龙川中学教师:段习发学习任务分析本课主要是通过对作图像方法与代数方法的比较,探索利用二元一次方程组确定一次函数的表达式.这一内容是上一课时内容的自然发展,上一课时探索了函数与方程之间的关系,并获得了方程组的图像解法,本节课研究利用二元一次方程组确定一次函数的表达式,这样更为全面地理解函数与方程、图形与代数表达式之间的关系,从而发展学生数形结合的意识。根据学生的实际情况设计如下:教学目标:1.理解作函数图像的方法与代数方法各自的特点

2、.2.掌握利用二元一次方程组确定一次函数的表达式.3.进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.4.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力。重点:1、弄清二元一次方程组与一次函数的联系。2、理解并会做待定系数法难点:1、会用二元一次方程组与一次函数的联系解决简单实际问题。2、熟练待定系数法教学过程设计本节课设计了六个教学环节:第一环节,复习引入;第二环节,设计实际问题情境,导入新课;第三环节,典型例题,探究二元一次方程组确定一次函数的

3、表达式;第四环节,练习与提高;第五环节,课堂小结;第六环节,布置作业.第一环节 复习引入内容:(1)二元一次方程组与一次函数有何联系?(2)二元一次方程组有哪些解法?意图:通过(1)问,体会函数和方程之间的联系——二元一次方程组的解是它们对应的两个一次函数图像的交点坐标;反之,两个一次函数图像的交点也是它们所对应的二元一次方程组的解;所以方程问题可以转化为函数来解决,同样函数问题也可以通过方程问题来加以解决.为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.通过(2)问,让学生感受解决问题的方

4、法的多样性和知识之间是互相联系的,为后面利用作图像方法和代数方法解决议一议的问题作铺垫.第二环节 设计实际问题情境,导入新课内容:教材议一议A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行。假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数。1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?第三环节典型例题,探究一次函数解析式的确定内容:例某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购

5、买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式;(2)旅客最多可免费携带多少千克的行李?(3)解:(1)设,根据题意,可得方程组解该方程组,得所以(2)当x=30时,y=0.所以旅客最多可免费携带30千克的行李.例 某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.(1)分别写出当0≤x≤15和x

6、>15时,y与x的函数关系式;x(吨)y(元)15203927O(2)若某用户十月份用水量为10吨,则应交水费多少元?若该用户十一月份交了51元的水费,则他该月用水多少吨?(3)解:(1)当0≤x≤15时,设,根据题意得,解得所以当0≤x≤15时,;当x>15时,设根据题意,可得方程组解这个方程组,得所以当x>15时,.(2)当x=10时,代入中,得y=18.当y=51时,代入中,得x=25.oyx12341234意图:通过两个例题的探索,让学生掌握利用二元一次方程组确定一次函数的表达式的方法;在

7、设计本例题时,考虑到两种类型,一是利用文字提供的信息,一种是利用图像提供的信息,补充例2主要是承接第六章,一次函数图像的应用,进一步强化学生数形结合的意识,学会从图形中获取有用的信息.第四环节 练习与提高内容:1.图中的两条直线,的交点坐标可以看做方程组的解答案:2.在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案:当

8、x=4时,y=16.5意图:通过练习1,强化函数与方程的关系,同时也是利用二元一次方程组确定一次函数解析式这一方法的训练,目的在于加强学生数形结合思想的应用,以及从图形中获取有用的信息,同时也是对本节课教学重点的强化.让学生明白新旧知识之间是有着知识上的联系的;练习2是配合例1出的一个练习,目的是强化本节知识的重点“利用二元一次方程组确定一次函数解析式”.效果:通过学生的解答和老师的讲解,让学生掌握这类问题解决的一般方法,为课堂小结做好铺垫.第五环节 课堂小结内容:一、函数与方程之

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。