欢迎来到天天文库
浏览记录
ID:38460850
大小:173.00 KB
页数:7页
时间:2019-06-13
《1 认识二元一次方程组》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第五章二元一次方程组1.认识二元一次方程组成都市盐道街中学实验学校邓国伟刘志燕四川师大附中黄德轩一、学生起点分析学生的知识技能基础:学生在七年级上册已学过一元一次方程,学生已经具备列一元一次方程解决实际问题的经验基础,为本节的学习已做好知识储备,估计学生应有能力经过自主探索和交流列出二元一次方程组,解决简单的实际问题.学生活动经验基础:本节所涉及的实际问题包括:老牛、小马驮包裹问题、公园的门票问题等,这些问题均为全体学生所熟悉的情境,容易被学生接受和理解,从而也容易建立相应的数学模型来解题.二、教学任务分析《谁的包裹多》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元
2、一次方程组》的第一节,本节内容安排1个课时完成.具体内容是:让学生通过对实际问题的分析,体会方程是刻画现实世界的一个有效数学模型;同时了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.二元一次方程是继一元一次方程后,又一个体现符号表示思想的内容,它是刻画现实世界的一个有效数学模型,在数学上有着广泛的应用,同时也是学习物理、化学等其他学科知识的一个重要基础.它既是一元一次方程知识的延伸和拓广,又是今后学习一般线性方程组及平面解析几何等知识的基础,具有承上启下的作用.列方程(组)解应用题是联系实际的重要方面,突显了方程作为一种数学模型的重要
3、特征,这既是培养学生逻辑思维能力的良好载体,也是培养学生应用意识和实践能力的良好题材.基于学生对一元一次方程理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程、二元一次方程组及其解等基本概念.在学习过程中,要突出强调建模思想,展现方程是刻画现实世界的有效数学模型,是贯穿方程与方程组的一条主线.为此,本节课的教学目标是:(1)理解二元一次方程(组)及其解的概念,能判别一组数是否是二元一次方程(组)的解;(2)会根据实际问题列简单的二元一次方程或二元一次方程组;(3)通过加深对概念的理解,提高对“元”和“次”的认识,而且能够逐步培养类比分析
4、和归纳概括的能力,了解变与不变的辩证统一的思想.本节课的教学重点是:(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;(2)判断一组数是不是某个二元一次方程组的解.本节课的教学难点是:从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想.三、教学过程设计本节课设计了四个教学环节:第一环节:情境引入;第二环节:新课讲解,练习提高;第三环节:课堂小结;第四环节:布置作业.第一环节:情境引入内容:(一)情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比
5、我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:.(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几
6、个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程和.在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两
7、个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一)二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念
此文档下载收益归作者所有