欢迎来到天天文库
浏览记录
ID:38459581
大小:13.00 KB
页数:4页
时间:2019-06-13
《圆内接正多边形和圆》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、正多边形和圆 教学目标: (1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理; (2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力; (3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想. 教学重点: 正多边形的概念与正多边形和圆的关系的第一个定理. 教学难点: 对定理的理解以及定理的证明方法. 教学活动设计: (一)观察、分析、归纳: 观察、分析:1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质
2、? 归纳:等边三角形与正方形的边、角性质的共同点. 教师组织学生进行,并可以提问学生问题. (二)正多边形的概念: (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形. (2)概念理解: ①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,…….) ②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么? 矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等. (三)分析
3、、发现: 问题:正多边形与圆有什么关系呢? 发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆. 分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢? (四)多边形和圆的关系的定理 定理:把圆分成n(n≥3)等份: 依次连结各分点所得的多边形是这个圆的内接正n边形;说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形; (2)要注意定理中的“依次”、“
4、相邻”等条件. (3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形. (五)初步应用 P157练习 1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么? 2.求证:正五边形的对角线相等. (六)小结: 知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形. 能力和方法:正多边形的证明方法和思路,正多边形判断能力 (七)作业教材P172习题A组2、3. 第1234页
此文档下载收益归作者所有