《3.5 确定圆的条件教学设计》

《3.5 确定圆的条件教学设计》

ID:38457046

大小:81.00 KB

页数:5页

时间:2019-06-13

《3.5 确定圆的条件教学设计》_第1页
《3.5 确定圆的条件教学设计》_第2页
《3.5 确定圆的条件教学设计》_第3页
《3.5 确定圆的条件教学设计》_第4页
《3.5 确定圆的条件教学设计》_第5页
资源描述:

《《3.5 确定圆的条件教学设计》》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第三章圆3.5确定圆的条件一、学生知识状况分析学生的知识技能基础:通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。学生活动经验基础:在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。二、教学任务分析本节课的内容是第一节内容的延续,学生已积累了画一个圆的经验。基于以上两点,提出本课的具体学习任务:①经过一点、两点、三点能否作出圆、能作出几个圆。②了解三

2、角形的外接圆、三角形的外心等概念,但本课内容从属于“空间与图形”的教学目标:认识通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满探索性和创造性,感受证明的必要性及结论的确定性。同时也应力图在学习中逐步达成学生的有关情感态度目标。因此,本节课的教学目标是:知识与技能1.了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法;2.了解三角形的外接圆、三角形的外心等概念。过程与方法1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。2.通过探索不在同一直线上的三个点确定一个圆的问题

3、,进一步体会解决数学问题的策略。情感态度与价值观形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。教学重点:确定圆的条件教学难点:确定圆的条件三、教学过程分析本节课设计了六个教学环节:课前准备;情景引入;实践探究;合作学习练习提高;课堂小结;布置作业。第一环节:课前准备活动内容:布置学生在课前复习,回答如下的问题:(1)经过一点、两点、三点你能否画出一条直线吗?若能,可以画出几条直线?(2)通过以上问题的回答,你有什么体会?(3)已知线段AB,求作线段AB的中垂线?活动目的:通过问题(3),希望学生复习线段中垂

4、线的尺规作法,为本课作圆作知识的铺垫。通过问题(1)(2)的复习回答,为本课的探索“经过三点能否确定一个圆”作一个探索策略上的铺垫,进一步培养了学生分类讨论的数学思想。实际教学效果:在课始的提问中,学生对中垂线的尺规作法、经过一点可以画无数条直线、经过两点可以画一条直线的回答较好,但在回答“经过三点能否画直线”问题上出现分歧,部分回答“不能画出直线”或“可以画一条直线”或“以上两种情况都有可能”等。通过对问题的争论、回答,达到了预期目标,培养了学生学会与人合作,能与他人交流思维的过程和结果。第二环节:情景引入活动内容:学生小组讨论如下

5、问题:某地区一空地上新建了三个居住小区A、B、C。现要规划一间学校,使学校到三个小区的距离相等,你如何选取这所学校的地点?活动目的:①通过问题的思考讨论,有承上启下的作用,而先要解决这三个小区是否在一直线上。②引起学生回想圆的定义,得出作圆的关键是定圆心、定半径。③借助实际问题情景,激发学生解决问题的兴趣,为解决本节课的目标“确定圆的条件”和下环节的探究活动注入动力。实际教学效果:学生在一个宽松的气氛下展开对问题的探究:问题应分A、B、C三小区在同一直线上或不在同一直线上两种情况;问题即是找出一个同时经过A、B、C三点的圆。(自然引出

6、课题)第三环节:实践探究,解决问题活动内容:参照教材提供的三个问题:①、作圆,使它经过已知点A,你能作出几个这样的圆?为什么有这样多个圆?②、作圆,使它经过已知点A、B,你是如何做的?依据是什么?你能作出几个这样的圆?其圆心分布有什么特点?与线段AB有什么关系?为什么?③、作圆,使它经过不在同一直线的已知点A、B、C,你是如何做到的。你能作出几个这样的圆?为什么?④、你现在能解决课前的问题了吗?动手做一做?活动目的:以问题串的形式引导学生由易到难地开展探究活动、培养学生的探究精神,使学生体会在这一过程中所体现的归纳思想,从中探究出:①

7、不在同一直线上的三个点为什么只确定一个圆?②这个圆如何用“尺规”作出?③三角形外接圆,三角形的外心的概念等问题,从而实现本节课的教学目标,突破重点难点,使学生掌握过三点作圆的方法。实际教学效果:学生对问题①、②中有多少个符合条件的圆能很快地回答出来,但学生对问题①中“为什么”的回答未能抓住画圆的本质(定圆心、定半径)来回答;对问题③的探究用时比较长,重要原因是部分学生作了三条边的中垂线,对“为什么”的回答也未能抓住交点的唯一性及半径随着点的确定而确定进行回答。第四环节:练习提高活动内容:(1)完成课本随堂练习;(2)判断题:①经过三点

8、一定可以作圆。()②任意一个三角形有且只有一个外接圆。()③三角形的外心是三角形三边中线的交点。()④三角形外心到三角形三个顶点的距离相等。()(3)如图是一块残缺的圆形木盖,现要重新制作一块与原来一样大小的圆形木盖,你

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。