信息论与编码理论基础(第六章)

信息论与编码理论基础(第六章)

ID:38452512

大小:764.00 KB

页数:91页

时间:2019-06-13

信息论与编码理论基础(第六章)_第1页
信息论与编码理论基础(第六章)_第2页
信息论与编码理论基础(第六章)_第3页
信息论与编码理论基础(第六章)_第4页
信息论与编码理论基础(第六章)_第5页
资源描述:

《信息论与编码理论基础(第六章)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六章:线性分组码§6.1分组码的概念(与主教材标题不同)§6.2线性分组码§6.3线性分组码的校验矩阵(与主教材标题不同)§6.5译码方法和纠错能力(与主教材标题不同)§6.4、§6.6、§6.7、§6.8一些特殊的线性分组码2021/7/191§6.1分组码的概念设信道是一个D元字母输入/D元字母输出的DMC信道,字母表为{0,1,…,D-1}。其信道转移概率矩阵为D×D矩阵传输错误的概率为p。信道容量为C=logD-H(p)-plog(D-1)。2021/7/192§6.1分组码的概念对随机变量序列X1X2…进行的信道编码为

2、(N,L)码:(X1X2…XL)→(U1U2…UN)=C(X1X2…XL)。这个(N,L)码又称为(N,L)分组码。已经有结论:当设备所确定的编码速率R

3、结构,称作有限域,又称作Galois域,记作GF(D):GF(D)=({0,1,…,D-1},(modD)加法,(modD)乘法)。即(1)({0,1,…,D-1},(modD)加法)构成交换群(Abel群)。(2)({1,…,D-1},(modD)乘法)构成交换群(Abel群)。(3)分配率成立:a(b+c)(modD)=ab+ac(modD)。2021/7/194§6.1分组码的概念注1:如果D不是素数,({0,1,…,D-1},(modD)加法,(modD)乘法)不是有限域,只是有限环。注2:有限域GF(D)上的线性代数完全

4、类似于实数域上的线性代数,线性代数的所有内容都在“加法”和“乘法”基础上得到。元素的“加法”负元;非0元的“乘法”逆元;一组向量是否“线性无关”的概念以及所有等价的判别方法;矩阵的“秩”的概念以及所有计算方法;方阵是否“可逆”的所有判别方法;求方阵的“逆阵”的所有算法;关于对称矩阵的所有结论;等等。注3:有限域GF(D)与实数域的区别是:传统的“逼近”、“极限”的概念消失了。2021/7/195例:取D=2,则GF(2)=({0,1},(mod2)加法,(mod2)乘法)。运算规则为:0+0=1+1=0,0+1=1,0×0=0×1

5、=0,1×1=1。方阵是否可逆?回答是肯定的。两种不同的判别方法都能够证明它是可逆的:(1)它经过可逆行变换能够变成单位阵;(2)它的行列式不等于0。(等于1!)2021/7/196§6.1分组码的概念该方阵的逆矩阵是什么?怎样计算?做联合可逆行变换:2021/7/197§6.1分组码的概念例:取D=3,则GF(3)=({0,1,2},(mod3)加法,(mod3)乘法))。运算规则为:0+0=1+2=0,0+1=2+2=1,0+2=1+1=2,0×0=0×1==0×2=0,1×1=2×2=1,1×2=2。矩阵是不是满行秩的?换句

6、话说,此矩阵的三个行向量是不是在域GF(3)上线性无关的?再换句话说,能否保证此矩阵的各行的任何非0线性组合都不是全0的4维向量?再换句话说,此矩阵能否通过一些可逆行变换变成一个“阶梯阵”?2021/7/198§6.1分组码的概念可逆行变换2021/7/199§6.1分组码的概念例:域GF(D)上的一个L行N列的矩阵(L×N阶的矩阵)G,设它是满行秩的(当然此时有L≤N)。则变换(u1,u2,…,uN)=(x1,x2,…,xL)G一定是单射(即(x1,x2,…,xL)的不同值一定变换为(u1,u2,…,uN)的不同值)。证明设u(

7、1)=x(1)G,u(2)=x(2)G,且x(1)≠x(2)。要证明u(1)≠u(2)。根据线性性质,u(1)-u(2)=(x(1)-x(2))G,因为(x(1)-x(2))≠全0的L维向量,所以(x(1)-x(2))G是G的各行的非0线性组合。G满行秩,所以(x(1)-x(2))G≠全0的N维向量。所以u(1)≠u(2)。2021/7/1910§6.1分组码的概念预备知识2:有限域上的分组码当D是素数时,分组码可以充分利用有限域GF(D)的代数运算,使得编码和译码更加简便。2021/7/1911§6.2线性分组码定义取GF(D)

8、上的一个L行N列的矩阵G,它是满行秩的。(N,L)分组码定义为(u1,u2,…,uN)=(x1,x2,…,xL)G其中(x1,x2,…,xL)是信息向量,(u1,u2,…,uN)是对应的码字。(1)称此码为D元(N,L)线性分组码。(2)称矩阵G为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。