直观教学的思考

直观教学的思考

ID:38421229

大小:28.50 KB

页数:6页

时间:2019-06-12

直观教学的思考_第1页
直观教学的思考_第2页
直观教学的思考_第3页
直观教学的思考_第4页
直观教学的思考_第5页
资源描述:

《直观教学的思考》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、培养几何直观能力的教学思考《全日制义务教育数学课程标准(修改稿)》提出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。几何直观主要是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。《普通高中数学课程标准》也提出要培养和发展学生的几何直观能力以及借助几何直观进行推理论证的能力。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。在小学数学教学中,教师应该选择适当的教学内容,培养学生几何直观的能力。一、对几何直观的本质把握数学家克莱因

2、认为:“数学的直观是对概念、证明的直接把握”。蒋文蔚先生指出,几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态。(《数学教育学报》,1997年第4期)徐利治先生提出,直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。换言之,通过直观能够建立起人对自身体验与外物体验的对应关系。这些数学家对直观包括几何直观下了定义。综合这些定义,我们认为直观要体现两点:一是透过现象看本质;二是一眼能看出不同事物之间的关联。直观是一种感知,一种有洞察力的定

3、势。几何直观是利用图形洞察问题本质的一种方式,既有形象思维的特点,又有抽象思维的特点。二、培养几何直观能力的教学方法在小学数学中培养学生的几何直观能力,要先从直观教学开始,引导学生学会用画图的策略分析题意,解决简单的实际问题,逐步上升到能将直观图与数学语言、符号语言进行合情转换,并逐步在解决数学问题的过程中渗透数形结合思想,感悟数与形、形与数之间的转化。1.重视直观感知,突出画图策略的教学。苏教版四年级(下册)《解决问题的策略》主要教学用画直观示意图的方法解决有关面积计算的实际问题。在教学面积计算的问题时,关键要使学生想到画图、正确画图、用图分析和体验画图解决问题的好

4、处。首先可以向学生呈现纯文字的例题,面对比较复杂的数学问题,引导学生想到用画图的方法整理条件和问题。接着鼓励学生尝试画草图,让学生的思维集中于用画图来表达题意,并通过师生交流,进一步完善画出的示意图,使学生感受到画图能清楚地理解题意。然后借助示意图分析数量关系,明确先求什么,再求什么,列式解答后,要再结合算式和图说说解题思路。最后反思整个解题的过程,突出示意图对解决这个数学问题的重要作用,感受画图策略的价值。“试一试”和“想想做做”的题目与例题相比有一定变化,解决这些问题后,要引导学生思考:“不画图能准确解决这些问题吗?画图时要注意什么?”加深学生对应用画图策略价值的

5、直观体验。在小学数学教学中,要重视直观化的教学手段,通过画图(线段图、面积图、示意图等)将复杂的数学问题变得简明、形象,有助于探索解决问题的思路。例如:教学计算题:1+3+5+7+…+99=(    )时,可以设计两个教学层次:第一层次,鼓励学生尝试解答,学生一般会按照等差数列求和的方法进行计算;第二层次,教师介绍画正方形点阵图表示题目的意思,并引导学生看着图,寻找算式与点阵图之间的关系,从中发现规律,得出1+3+5+7+…+99=502=2500。最后,回顾解题过程,使学生体会到,解决复杂问题时,可以换个思路,借助直观图,把复杂的数学问题变得简单,从而找到解决问题的

6、方法2.重视直观图形与数学符号的合情转换。教学人教版六年级(下册)《正比例的意义》,在学生认识正比例的意义后,教材安排了正比例图像的初步认识,借助直观的图像,帮助学生进一步认识成正比例量的变化规律,为以后的学习作适当孕伏。教学时,根据例1表中的数据,先引导学生用“描点法”画出一幅表示正比例关系的图像。在描点的过程中,引导学生把所描出的点与表中的数据相对照,让学生初步理解图像上各点所表示的实际意义,即每个点都表示路程和时间的一组相对应的数值。再通过观察,使学生发现所描出的这些点正好在一条直线上,清楚地认识正比例图像的特点,并借助直观的图像进一步理解两种量同时扩大或缩小的

7、变化规律,理解正比例的意义。画出图像后,让学生根据图像来判断行驶路程和时间,进一步认识图像上任意一点所表示的实际意义,初步体会正比例图像的实际应用。通过正比例图像与正比例关系式的转换,加深对正比例意义的理解,为今后进一步学习函数知识打下初步的基础。再如,教学《用假设的策略解决实际问题》时,可以提示学生根据自己的假设画出示意图,并根据画出的图分析假设后乘船人数的变化以及产生这种变化的原因,引导学生根据数量发生的变化及时进行调整,推算出每种船的只数,最后进行检验。这一解决问题的过程就涉及直观图与算式的转换,学生借助直观图,抽象出解题思路:假设—比较—调整

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。