欢迎来到天天文库
浏览记录
ID:38270577
大小:29.93 KB
页数:4页
时间:2019-05-24
《常微分方程专题选讲小题目》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、PROBLEMSINTOPICSOFORDINARYDIFFERENTIALEQUATIONSBYJIANGANGQITopic1.ExactnessofsecondorderdifferentialequationsP11:Provethatf(x;y′;y′′)=0isexactifandonlyif()()@f@fDx Dx=0@y′′@y′P12:Provethatf(y;y′;y′′)=0isexactifandonlyif()()@f@f@f Dx+Dx=0@y@y′@y′′P13:Provethatf(x;y;y′′)=0isexactifandonlyif()@f@f+Dx=
2、0@y@y′′P14:Provethaty′′=f(x;y;y′)0isexactifandonlyif()@f@f Dx=0@y@y′P15:Findoutthesufficientandnecessaryconditionfortheequation′′′f(x;y)+g(y;y)=0tobeexactandgivetheproof.P16:Findoutthesufficientandnecessaryconditionfortheequation′′′f(x;y)+g(y;y)=0tobeexactandgivetheproof.P17:Findoutthesufficientandneces
3、saryconditionfortheequation′′′f(x;y)+g(y;y)=0tobeexactandgivetheproof.P18:Constructanexactsecondorderdifferentialequationandsolveit(Four).P18:Constructanexactsecondorderdifferentialequationandsolveit(Four).P18:Constructanexactsecondorderdifferentialequationandsolveit(Four).12P18:Constructanexactsecon
4、dorderdifferentialequationandsolveit(Four).P19:Studyintegralfactorsofnon-exactsecondorderdifferentialequations(Two).P19:Studyintegralfactorsofnon-exactsecondorderdifferentialequations(Two).Topic3.Loweranduppersolutions,monotoneiterativemethodsforIVPoffirstorderdifferentialequationsP31:ConsidertheIVPoffi
5、rstorderdifferentialequations′u=f(t;u);u(0)=u0;t2[0;T]:(IVP+)Letfsatisfyone-sideLipschitzconditionf(t;u1) f(t;u2)L(u1 u2)wheneveru1u2forsomeL>0.Provetheuniquenessofsolutionsof(IVP+).(Two)P31:ConsidertheIVPoffirstorderdifferentialequations′u=f(t;u);u(0)=u0;t2[0;T]:(IVP+)Letfsatisfyone-sideLipschitzc
6、onditionf(t;u1) f(t;u2)L(u1 u2)wheneveru1u2forsomeL>0.Provetheuniquenessofsolutionsof(IVP+).(Two)P32:ConsidertheIVPoffirstorderdifferentialequations′u=f(t;u);u(0)=u0;t2[ T;0]:(IVP )Letfsatisfyone-sideLipschitzconditionf(t;u1) f(t;u2) L(u1 u2)wheneveru1u2forsomeL>0.Provetheuniquenessofsolutionsof
7、(IVP-).(Two)P32:ConsidertheIVPoffirstorderdifferentialequations′u=f(t;u);u(0)=u0;t2[ T;0]:(IVP )Letfsatisfyone-sideLipschitzconditionf(t;u1) f(t;u2) L(u1 u2)wheneveru1u2forsomeL>0.Provetheuniquenessofsolutionsof(
此文档下载收益归作者所有