欢迎来到天天文库
浏览记录
ID:38181405
大小:69.00 KB
页数:17页
时间:2019-06-06
《2010山东文科数学考试说明》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、taoti.tl100.com你的首选资源互助社区2010年普通高等学校招生全国统一考试山东卷考试说明数学(文史类)Ⅰ.命题指导思想一、命题以《普通高中数学课程标准(实验)》、《2010年普通高等学校招生全国统一考试大纲(文科·课程标准实验版)》和《2010年普通高等学校招生全国统一考试(课程标准实验版)山东卷考试说明》为依据,不拘泥于某一版本的教材.二、命题结合我省普通高中数学教学实际,体现数学学科的性质和特点,注重对数学基础知识、基本技能、数学思想和方法的考查,注重对考生数学素养和解决问题能力的考查.鼓励考生多角度、创造性地思考和解决问题.三、命题保持相对稳定,体现新课程理念.四、命
2、题力求科学、准确、公平、规范,试卷应有较高的信度、效度、必要的区分度和适当的难度.Ⅱ.考试内容及要求一、知识要求各部分知识的整体要求及其定位参照《普通高中数学课程标准(实验)》相应模块的有关说明.对知识的要求由低到高分为三个层次:了解、理解和掌握.1.了解:要求对所列知识的含义有初步的、感性的认识,知道其内容是什么,并能在有关的问题中识别、模仿.2.理解:要求对所列知识内容有较为深刻的理性认识,清楚知识间的逻辑关系,能够用数学语言对它们作正确的描述、说明,能够利用所学的知识内容对有关的问题进行比较、判别、讨论、推测,具备解决简单问题的能力,并能初步应用数学知识解决一些现实问题.3.掌握:
3、要求能够对所列知识进行准确的刻画或解释、推导或证明、分类或归纳;系统地把握知识间的内在联系,能够灵活运用所学知识,分析和解决较为复杂的数学问题以及一些现实问题.taoti.tl100.com你的首选资源互助社区二、能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以及应用意识和创新意识.1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的
4、整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素及其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律. 4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题
5、,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.三、考试范围考试范围是《普通高中数学课程标准(实验)》中的必修课程内容和选修系列1的内容,即数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数).数学2:立体几何初步、平面解析几何初步.数学3:算法初步、统计、概率.taoti.tl100.com你的首选资源互助社区数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换.数学5:解三角形、数列、不等式.选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用.选修1-2:统
6、计案例、推理与证明、数系的扩充与复数的引入、框图.选修系列4的内容,在2009年暂不被列入数学科目的命题范围.四、具体考试内容及其要求 1.集合 (1)集合的含义与表示 ①了解集合的含义、元素与集合的属于关系. ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集. ②在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
7、③能使用韦恩(Venn)图表达集合的关系及运算. 2.函数概念与基本初等函数I(指数函数、对数函数、幂函数) (1)函数taoti.tl100.com你的首选资源互助社区 ①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. ③了解简单的分段函数,并能简单应用. ④理解函数的单调性、最大值、最小值及其几何意义
此文档下载收益归作者所有