第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定

第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定

ID:38119209

大小:145.50 KB

页数:5页

时间:2019-05-17

第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定_第1页
第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定_第2页
第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定_第3页
第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定_第4页
第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定_第5页
资源描述:

《第五章 相交线与平行线 word版习题小专题(一) 平行线的性质与判定》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、小专题(一) 平行线的性质与判定1.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2(两直线平行,同位角相等).∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).2.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.解:∠B=∠C.理由:∵AD平分∠EAC,∴∠EAD=∠DAC.∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∴∠B=∠C.3

2、.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.证明:∵AD∥BE,∴∠A=∠EBC.∵∠A=∠E,∴∠EBC=∠E.∴DE∥AB.∴∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(蓟县期中)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.解:∵∠1+∠2=180°,∴AB∥CD.∴∠GOD=∠3=100°.∴∠DOH=180°-∠GOD=180°-100°=8

3、0°.又∵OK平分∠DOH,∴∠KOH=∠DOH=×80°=40°.6.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.解:∵AB∥CD,∴∠BCE+∠B=180°.∵∠B=40°,∴∠BCE=180°-40°=140°.∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°.∵CM⊥CN,∴∠BCM=90°-70°=20°.7.如图,把一张长方形的纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠

4、2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠1+∠GED=180°,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°,∠2=110°.8.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=130°,∠FEC=15°,求∠ACF的度数.解:∵AD∥BC,∴∠ACB+∠DAC=180°.又∵∠DAC=130°,∴∠ACB=50°.∵EF∥AD,AD∥BC,∴EF∥BC.∴∠BCE=∠FEC=15°.又∵CE平分∠BCF

5、,∴∠BCF=2∠BCE=30°.∴∠ACF=∠ACB-∠BCF=20°.9.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.解:AD平分∠BAC.理由:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠3=∠2,∠E=∠1.∵∠3=∠E,∴∠1=∠2,即AD平分∠BAC.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.解:AB∥DE.理由:过点C作FG∥AB,∴∠BCG=

6、∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.如图,直线l1,l2均被直线l3,l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.解:已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠

7、4=∠2,∴∠2+∠3=90°.12.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.解:(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=180°-66°=114°.又∵EP平分∠BEF,∴∠PEF=∠PEB=∠BEF=57°.(2)过点P作PQ∥AB.∴∠EPQ=∠PEB=57°.∵AB∥CD,∴PQ∥CD,∠DFE=∠AEF=66°.∴∠FPQ=∠PFO.∵FP平分∠DF

8、E,∴∠PFD=∠DFE=33°.∴∠FPQ=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.13.(萧山区月考)如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。