欢迎来到天天文库
浏览记录
ID:38000758
大小:63.00 KB
页数:5页
时间:2019-04-30
《13.3 等腰三角形教案(共4课时)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.3.1等腰三角形(1)教学目标①经历剪纸、折纸等活动,进一步认识等腰三角形,了解等腰三角形是轴对称图形.②能够探索、归纳、验证等腰三角形的性质,并学会应用等腰三角形的性质.③培养分类讨论、方程的思想和添加辅助线解决问题的能力.教学重点:等腰三角形的性质的探索和应用.教学难点:等腰三角形的性质的验证.教学准备长方形的纸片、剪刀.教学设计剪一剪师生拿出课前准备好的长方形的纸片,按教科书第140页的要求剪出△ABC.设问1:△ABC有什么特点?学生思考后发现,上述过程中,剪刀剪过的两边是相等的,即△ABC中AB
2、=AC.像这样有两边相等的三角形叫等腰三角形.并结合△ABC介绍等腰三角形的“腰”“底边”“顶角”“底角”等概念.注:结合亲自剪出的等腰三角形学习相关概念,加深印象.折一折设问2:△ABC是轴对称图形吗?它的对称轴是什么?让学生认识到动手操作也是一种验证方式.猜一猜设问3:你还发现了什么现象,继而猜想等腰三角形ABC有哪些性质?学生讨论、汇报:①∠B=∠C→两个底角相等②BD=CD→AD为底边BC上的中线③∠BAD=∠CAD→AD为顶角∠BAC的平分线④∠ADB=∠ADC=90°→AD为底边BC上的高用语言叙述
3、为:性质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(可简记为“三线合一”性质)证一证设问4:你能用所学的知识验证等腰三角形的性质吗?1.证明等腰三角形底角的性质.教师要求学生根据猜想的结论画出相应的图形,写出已知和求证.已知:如图1,在△ABC中,AB=AC.求证:∠B=∠C.师生共同分析证明思路并证明.5强调以下两点:(1)利用三角形全等来证明两角相等.(2)添加辅助线的方法可以多样.例如,常见的作顶角∠BAC的平分线,或作底边BC上的
4、中线或作底边BC上的高等.让学生选择一种辅助线完成证明过程.2.证明等腰三角形的“三线合一”性质.(注:鼓励学生用多种方法证明.)用一用练习1(1)已知等腰三角形的一个底角是70°,则其余两角为_______________.(2)已知等腰三角形一个角是70°,则其余两角为_______________.(3)已知等腰三角形一个角是110°,则其余两角为_______________.出示课本142页例1如图2,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.改编为:(1)图中共有几个等腰三角形?分
5、别写出它们的顶角与底角.(2)你能求出各角的度数吗?议一议等腰三角形底边中点到两腰的距离相等吗?由等腰三角形是轴对称图形,还可以得到等腰三角形中问题较复杂,引导学生合作探究,更深入地认识等腰三角形哪些线段相等?作业教科书第143页练习1、2、3.教学后记:学生对等腰三角形的“三线合一”性质不熟悉,而它的应用又很广泛.因此,设计了多个问题、多种形式以加深印象.此外应用性质计算、证明时,要注意引导学生对解题思路和方法进行总结,切实提高学生分析问题,解决问题的能力.13.3.1等腰三角形(2)教学目标①会阐述、推证等
6、腰三角形的判定定理.②学会比较等腰三角形性质定理和判定定理的联系与区别.③经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值.教学重点:等腰三角形的判定定理的探索和应用.教学难点:等腰三角形的判定与性质的区别.教学准备师生准备作图工具.教案设计:创设情境,提出问题出示课本143页思考题.学生思考、回答后教师设问:在一般三角形中,如果有两个角相等,那么它们所对的5边有什么关系?如何验证?学生根据命题画出图形,并写出已知、求证.探索分析,解决问题1.分析思路:引导学生类比等腰三角形性质的证明,添加辅
7、助线,构造以AB,AC为边的两三角形,并证明它们全等.此时辅助线可作AD⊥BC于D;或AD平分∠BAC交BC于D;但不能作BC边上的中线.2.得出等腰三角形的判定定理.应用举例,变式练习出示教科书144页例2.小组合作:试改变上题的条件与结论,编出类似的问题.课堂练习,拓展引申出示教科书第144页例3.师生共同分析,问题解决之后,继而引导学生思考:已知底边与底边上的高,你能用尺规作图方法作出这个三角形吗?课堂小结,知识梳理1.通过这两节课的学习,你学会了几种判断等腰三角形的方法?2.你会比较等腰三角形性质定理与
8、判定定理的联系与区别吗?布置作业,:教科书第145页练习1、2、3.教学后记:利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的一种研究问题的方法.本节之前线段垂直平分线知识的学习以及以后学习平行四行形等特殊四边形的知识时会反复用到这种方法.此外要结合课堂例题教学,注重学生学习方法的培养.对于一个问题可“由因探果”,培养联想能力;可“执果索因”,培养分
此文档下载收益归作者所有