《3.3.2函数的极值与导数》教学案2

《3.3.2函数的极值与导数》教学案2

ID:37994166

大小:356.00 KB

页数:4页

时间:2019-05-03

《3.3.2函数的极值与导数》教学案2_第1页
《3.3.2函数的极值与导数》教学案2_第2页
《3.3.2函数的极值与导数》教学案2_第3页
《3.3.2函数的极值与导数》教学案2_第4页
资源描述:

《《3.3.2函数的极值与导数》教学案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《函数的极值与导数》教学案教学目标:知识与技能〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值过程与方法结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系.情感与价值感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识.教学重点:利用导数求函数的极值.教学难点:函数在某点取得极值的必要条件与充分条件.教学过程:〈一〉、创设情景,导入新课1、通过上节课的学习,导数和函数单调性的关系是什么?(提高学生回答)2.观察图表示高台跳水运动员的高度h随

2、时间t变化的函数=-4.9t2+6.5t+10的图象,回答以下问题(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数在t=a处的导数是多少呢?(2)在点t=a附近的图象有什么特点?(3)点t=a附近的导数符号有什么变化规律?共同归纳:函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数单调递增,>0;当t>a时,函数单调递减,<0,即当t在a的附近从小到大经过a时,先正后负,且连续变化,于是h/(a)=0.3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?<二>、探索研讨1、观察图所表示的y=f(x)的图象,回答以下问题:(1)函数y=f(

3、x)在a.b点的函数值与这些点附近的函数值有什么关系?(2)函数y=f(x)在a.b.点的导数值是多少?(3)在a.b点附近,y=f(x)的导数的符号分别是什么,并且有什么关系呢?2、极值的定义:我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值.极大值点与极小值点称为极值点,极大值与极小值称为极值.3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反.<三>、讲解例题例求函数的极值教师分析:①求f/

4、(x),解出f/(x)=0,找函数极点;②由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.学生动手做,教师引导解:∵∴=x2-4=(x-2)(x+2)令=0,解得x=2,或x=-2.下面分两种情况讨论:(1)当>0,即x>2,或x<-2时;(2)当<0,即-2<x<2时.当x变化时,,f(x)的变化情况如下表:x(-∞,-2)-2(-2,2)2(2,+∞)+0_0+f(x)单调递增单调递减单调递增因此,当x=-2时,f(x)有极大值,且极大值为f(-2)=;当x=2时,f(x)有极小值,且极小值为f(2)=函数的

5、图象如:归纳:求函数y=f(x)极值的方法是:1求,解方程=0,当=0时:(1)如果在x0附近的左边>0,右边<0,那么f(x0)是极大值.(2)如果在x0附近的左边<0,右边>0,那么f(x0)是极小值<四>、课堂练习1、求函数f(x)=3x-x3的极值.2、思考:已知函数f(x)=ax3+bx2-2x在x=-2,x=1处取得极值,求函数f(x)的解析式及单调区间.<五>、课后思考题:1、若函数f(x)=x3-3bx+3b在(0,1)内有极小值,求实数b的范围.2、已知f(x)=x3+ax2+(a+b)x+1有极大值和极小值,求实数a的范围.<六>、课堂小结:1、函数极值的

6、定义;2、函数极值求解步骤;3、一个点为函数的极值点的充要条件.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。