欢迎来到天天文库
浏览记录
ID:37857898
大小:283.00 KB
页数:4页
时间:2019-06-01
《4.7解三角形应用问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、洛阳市东方高中高三一轮学习单4.7解三角形应用举例编制人:高三数学组负责人:【使用说明】1.课前认真研读课本,完成自主研读学习单设计的问题.2.课堂内限时完成合作探究学习单,书写规范.3.找出疑问和不能独立解决的问题,通过合作探究,教师指导等方式解决.4.课后认真完成巩固提升学习单.【大纲要求】能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.※自主研读学习单※知识体系1.仰角和俯角与目标视线同在一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯
2、角.(如图所示)2.方位角一般指北方向线顺时针到目标方向线的水平角,如方位角45°,是指北偏东45°,即东北方向.3.方向角:相对于某一正方向的水平角.(如图所示)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.4.坡角坡面与水平面的夹角.(如图所示)5.坡比坡面的铅直高度与水平宽度之比,即i==tanα(i为坡比,α为坡角).6.解题的基本思路运用正、余弦定理处理实际测量中的距离、高度、角度等问题,实质是数学知识在生活中的应用,要解决好,就
3、要把握如何把实际问题数学化,也就是如何把握一个抽象、概括的问题,即建立数学模型.洛阳市东方高中高三一轮学习单.基础自测1.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β之间的关系是()A.α>βB.α=βC.α+β=90°D.α+β=180°2.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的()A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°3.如图所示,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,
4、不能确定A、B间距离的是()A.α,a,bB.α,β,aC.a,b,γD.α,β,b4.在200m高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°、60°,则塔高为________m.5.△ABC中,D为边BC上的一点,BD=33,sinB=,cos∠ADC=,求AD.※合作探究学习单※探究一与距离有关的问题例1如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行
5、速度为30海里/时,该救援船到达D点需要多长时间?变式11.如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.2、某观测站C在目标A的南偏西25°方向,从A出发有一条南偏东35°走向的公路,在C处测得与C相距31千米的公路上B处有一人正沿此公路向A走去,走20千米到达D,此时测得CD为21千米,求此人在D处距A还有多少千米?洛阳市东方高中高三一轮学习单3、如图所示,在梯形ABCD中,AD∥BC,AB=5,
6、AC=9,∠BCA=30°,∠ADB=45°,求BD的长.探究点二测量高度问题例2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.变式21、某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.2.如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20m,求山高CD.探究点三三角形中最值问题例3某
7、兴趣小组要测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已测得一组α、β的值,算出了tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔实际高度为125m,试问d为多少时,α-β最大?变式3如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与
8、圆心O分别在PC的两侧,求四边形OPDC面积的最大值.※巩固提升学习单※1.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A.B.C.D.2.(2011·揭阳模拟)如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CA
此文档下载收益归作者所有