2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)

2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)

ID:27731740

大小:613.00 KB

页数:17页

时间:2018-12-05

2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)_第1页
2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)_第2页
2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)_第3页
2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)_第4页
2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)_第5页
资源描述:

《2018年高考数学一轮复习专题4.7解三角形及其应用举例(讲)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第07节解三角形及其应用举例【考纲解读】考点考纲内容5年统计分析预测正弦定理和余弦定理掌握正弦定理、余弦定理及其应用2013浙江文18;2014浙江文18;理10,18;2015浙江文16;理16;2016浙江文16;理16;2017浙江14.1.测量距离问题;2.测量高度问题;3.测量角度问题.4.备考重点:(1)掌握正弦定理、余弦定理;(2)掌握几种常见题型的解法.(3)理解三角形中的有关术语.【知识清单】1.测量距离问题实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角

2、:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.   (4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).对点练习:【浙江宁波模拟】如图,某商业中心有通往正东方向和北偏东方向的两条街道,某公园位于商业中心北偏东角,且与商业中心的距离为公里处,现要经过公园修一条直路分别与两条街道交汇于两

3、处,当商业中心到两处的距离之和最小时,的距离为公里.【答案】.2.测量高度问题余弦定理:,,.变形公式cosA=,cosB=,osC=对点练习:【2015高考湖北】如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度m.【答案】【解析】依题意,,,在中,由,所以,因为,由正弦定理可得,即m,在中,因为,,所以,所以m.3.测量角度问题应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.对

4、点练习:【2017广东佛山二模】某沿海四个城市、、、的位置如图所示,其中,,,,,位于的北偏东方向.现在有一艘轮船从出发以的速度向直线航行,后,轮船由于天气原因收到指令改向城市直线航行,收到指令时城市对于轮船的方位角是南偏西度,则__________.【答案】,故.【考点深度剖析】高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等以下.高考对正弦定理和余弦定理应用的考查,主要是

5、利用定理等知识和方法解决一些与测量和几何计算有关的问题,关键是弄懂有关术语,认真理解题意,难度不大.主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.从近几年浙江卷来看,三角形中的应用问题,主要是结合直角三角形,考查边角的计算,也有与导数结合考查的情况.【重点难点突破】考点1测量距离问题【1-1】【2017北京市延庆区一模】在相距2千米的两点错误!未找到引用源。处测量目标错误!未找到引用源。,若错误!未找到引用源。,错误!未找到引用源。,则错误!未找到引用源。两点间的距离是_______________千米.【答案】错误!未找到引用源

6、。【解析】如图,由A点向BC作垂线,垂足为D,设AC=x,∵∠CAB=75°,∠CBA=60°,∴∠ACB=180°-75°-60°=45°,∴错误!未找到引用源。,∴在Rt△ABD中,错误!未找到引用源。(千米),所以错误!未找到引用源。两点间的距离是错误!未找到引用源。千米.【1-2】如图,A,B两点在河的同侧,且A,B两点均不可到达,测出AB的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定

7、理计算出AB.若测得CD=km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【答案】∴AB=(km).∴A,B两点间的距离为km.【1-3】如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=.若测得CA=400m,CB=600m,∠ACB=60°,试计算AB的长.【答案】【解析】在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB,∴AB2=4002+6002-2×400×600cos60°

8、=280000.∴AB=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。