欢迎来到天天文库
浏览记录
ID:37738509
大小:605.78 KB
页数:25页
时间:2019-05-30
《山东省泰安市教科研中心2019届高三考前密卷数学(理)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年山东省泰安市教科研中心高考数学考前试卷(理科)(5月份)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x
2、x2﹣x﹣2>0},B={x
3、0<log2x<2},则A∩B=( )A.(2,4)B.(1,1)C.(﹣1,4)D.(1,4)2.(5分)已知i为虚数单位,且复数z满足,则复数z在复平面内的点到原点的距离为( )A.B.C.D.3.(5分)抛掷红、蓝两颗骰子,当已知红色骰子的点数为偶数时,两颗骰子的点数之和不小于9的概率是( )A.B.C.D.4.(5分)已知{an}是等差数列,满足:对∀n∈N*,
4、an+an+1=2n,则数列{an}的通项公式an=( )A.nB.n﹣1C.n﹣D.n+5.(5分)在△ABC中,M为AC中点,=,=x+y,则x+y=( )A.1B.C.D.6.(5分)已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则
5、
6、FA
7、﹣
8、FB
9、
10、的值等于( )A.B.8C.D.47.(5分)已知如图所示的程序框图是为了求出使n!<5000的n最大值,那么在①和②处可以分别填入( )A.S<5000?;S=n•(n+1)B.S≥5000?;S=S•nC.S<5000?;S=S•nD.S≥5000?;S=n•(n+1)8.(5分)如图所示,
11、边长为a的空间四边形ABCD中,∠BCD=90°,平面ABCD⊥平面BCD,则异面直线AD与BC所成角的大小为( )A.30°B.45°C.60°D.90°9.(5分)优题速享如图是函数的部分图象,将函数f(x)的图象向右平移个单位长度得到g(x)的图象,给出下列四个命题:①函数f(x)的表达式为;②g(x)的一条对称轴的方程可以为;③对于实数m,恒有;④f(x)+g(x)的最大值为2.其中正确的个数有( )A.1个B.2个C.3个D.4个10.(5分)如图所示是某多面体的三视图,则该多面体的表面积为( )A.B.C.D.11.(5分)过双曲线﹣=1(a>b>0)右焦点F的直线交两
12、渐近线于A,B两点,∠OAB=90°,O为坐标原点,且△OAB内切圆半径为,则双曲线的离心率为( )A.2B.C.D.12.(5分)若函数存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.B.C.D.二、填空题:本题共4小题,每小题5分.13.(5分)已知= .14.(5分)(1++)(1+x2)5展开式中x2的系数为 15.(5分)已知实数x,y满足不等式组其中的最大值是 .16.(5分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列
13、{an}称为“斐波那契数列”.那么是斐波那契数列中的第 项.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,A,B,C所对的边分别为a,b,c且ccosA=4,asinC=5.(1)求边长c;(2)著△ABC的面积S=20.求△ABC的周长.18.(12分)某中学高一期中考试结束后,从高一年级1000名学生中任意抽取50名学生,将这50名学生的某一科的考试成绩(满分150分)作为样本进行统计,并作出样本成绩的频率分布直方图(如图).(1)由于工作疏忽,将成绩[130,140)的数据丢失,求此区间的人数及频率分布直方图的中位数;(结果保留两位小数)(2)
14、若规定考试分数不小于120分为优秀,现从样本的优秀学生中任意选出3名学生,参加学习经验交流会.设X表示参加学习经验交流会的学生分数不小于130分的学生人数,求X的分布列及期望;(3)视样本频率为概率.由于特殊原因,有一个学生不能到学校参加考试,根据以往考试成绩,一般这名学生的成绩应在平均分左右.试根据以上数据,说明他若参加考试,可能得多少分?(每组数据以区问的中点值为代表)19.(12分)如图,在直三棱柱ABC﹣A1B1C1(侧棱垂直于底面的棱柱)中,CA⊥CB,CA=CB=CC1=2,动点D在线段AB上.(1)求证:当点D为AB的中点时,平面B1CD⊥上平面ABB1A1;(2)当AB=
15、3AD时,求平面B1CD与平面BB1C1C所成的锐二面角的余弦值.20.(12分)圆O:x2+y2=9上的动点P在x轴、y轴上的射影分别是P1,P2,点M满足=+.(1)求点M的轨迹C的方程;(2)点A(0,1),B(0,﹣3),过点B的直线与轨迹C交于点S,N,且直线AS、AN的斜率kAS,kAN存在,求证:kAS•kAN为常数.21.(12分)已知函数f(x)=ax+lnx(a∈R),g(x)=x2emx(m∈R,e为自然对数的
此文档下载收益归作者所有