元线性回归模型的基本假设

元线性回归模型的基本假设

ID:37724254

大小:214.25 KB

页数:10页

时间:2019-05-29

元线性回归模型的基本假设_第1页
元线性回归模型的基本假设_第2页
元线性回归模型的基本假设_第3页
元线性回归模型的基本假设_第4页
元线性回归模型的基本假设_第5页
资源描述:

《元线性回归模型的基本假设》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§2.2一元线性回归模型的基本假设(AssumptionsofSimpleLinearRegressionModel)一、关于模型设定的假设二、关于解释变量的假设三、关于随机项的假设一元线性回归模型:只有一个解释变量i=1,2,…,nY为被解释变量,X为解释变量,0与1为待估参数,为随机干扰项说明为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。实际上这些假设与所采用的估计方法紧密相关。下面的假设主要是针对采用普通最小二乘法(OrdinaryLeastSquares,OLS)估计而提出的。所以,在有些教科书中称为“TheAssumpti

2、onUnderlyingtheMethodofLeastSquares”。在不同的教科书上关于基本假设的陈述略有不同,下面进行了重新归纳。1、关于模型关系的假设模型设定正确假设。Theregressionmodeliscorrectlyspecified.线性回归假设。Theregressionmodelislinearintheparameters。注意:“linearintheparameters”的含义是什么?2、关于解释变量的假设确定性假设。Xvaluesarefixedinrepeatedsampling.Moretechnically,Xi

3、sassumedtobenonstochastic.注意:“inrepeatedsampling”的含义是什么?与随机项不相关假设。ThecovariancesbetweenXiandμiarezero.由确定性假设可以推断。观测值变化假设。Xvaluesinagivensamplemustnotallbethesame.无完全共线性假设。Thereisnoperfectmulticollinearityamongtheexplanatoryvariables.适用于多元线性回归模型。样本方差假设。随着样本容量的无限增加,解释变量X的样本方差趋于一有限

4、常数。时间序列数据作样本时间适用3、关于随机项的假设0均值假设。Theconditionalmeanvalueofμiiszero.同方差假设。Theconditionalvariancesofμiareidentical.(Homoscedasticity)由模型设定正确假设推断。是否满足需要检验。序列不相关假设。Thecorrelationbetweenanytwoμiandμjiszero.是否满足需要检验。4、随机项的正态性假设在采用OLS进行参数估计时,不需要正态性假设。在利用参数估计量进行统计推断时,需要假设随机项的概率分布。一般假设随机项

5、服从正态分布。可以利用中心极限定理(centrallimittheorem,CLT)进行证明。正态性假设。Theμ’sfollowthenormaldistribution.5、CLRM和CNLRM以上假设(正态性假设除外)也称为线性回归模型的经典假设或高斯(Gauss)假设,满足该假设的线性回归模型,也称为经典线性回归模型(ClassicalLinearRegressionModel,CLRM)。同时满足正态性假设的线性回归模型,称为经典正态线性回归模型(ClassicalNormalLinearRegressionModel,CNLRM)。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。