Tasks in NLP domain POS Tagging

Tasks in NLP domain POS Tagging

ID:37659496

大小:2.32 MB

页数:30页

时间:2019-05-27

Tasks in NLP domain  POS Tagging_第1页
Tasks in NLP domain  POS Tagging_第2页
Tasks in NLP domain  POS Tagging_第3页
Tasks in NLP domain  POS Tagging_第4页
Tasks in NLP domain  POS Tagging_第5页
资源描述:

《Tasks in NLP domain POS Tagging》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、AmoghAsgekar(06329006)JeevanChalke(06329011)VinayDeshpande(06305001)JubinChheda(06305003)OutlineNLPtasksTypesofdomainadaptationSampleselectionbiasStructuralcorrespondinglearningAdaptationbyfeatureaugmentationConclusionTasksinNLPdomainPOSTaggingAssignPOStagstothewordsinagiventes

2、tcorpus.ParsingConstructastructureoutofthegivensentenceformations.WordsensedisambiguationSelectaparticularmeaningofthewordfromvariouspossibilities.NamedentityrecognitionIdentifyingnamedentities(names,addressetc)fromagivencorpus.DomainAdaptationThepre-mentionedtasksareperformedby

3、“learning”fromacorpusandthenapplyingtheknowledgetoclassifythetestinstances.Incasethetrainingdistributionsandtestdistributionsaredifferent,thentheclassifiertendstoperformerroneously.Insuchcases,classifierneedstobedomainadaptedtoperformaccuratelyonboththedomains.APOStaggingtaskConside

4、rthefollowingexample:-LearnerhasaccesstoLabeleddataSrandomlysampledfromthetrainingdistributionPS.UnlabelledsampleTsampledfromanunknowntestdistributionPT.TaskofthelearneristopredictslabelsofpointsgeneratedandlabeledaccordingtoP.TTypesofDomainAdaptationAnalysethecausesfordomaindiver

5、genceandmodelthemintothelearnerSampleselectionbiasDiscoverthedivergenceofthedistributionsduringtrainingStructuralCorrespondenceLearningFeatureAugmentationModelSampleSelectionBiasWhatisSampleSelectionBias?Samples(x,y,s)aredrawnindependentlyfromadomain(X×Y×S)withdistributionD.Sisab

6、inaryspace.Ifs=1,thatinstanceisselected.Fourcasesofdependenceof(x,y)ons:1.s⊥xands⊥y2.s⊥y

7、x3.s⊥x

8、y4.sdependsonbothxandySampleSelectionBiasCorrectionCase:s⊥y

9、xi.e.Thesub-domainselectiondependsonlyonthewordsandnotontheirPOS-tags.NowifDistheoriginaldistributionofdomainandD’isthedistribu

10、tionofselectedsub-domainthen,wecanconvertfromonedomaintootherusingamultiplierPr(s=)1β(X)=Pr(s=

11、1X)Thus,D(x,y,s)=β(X)*D’(x,y,s)•ThepriorprobabilitiesPr(s=1)andPr(s=1

12、x)mustbeknown.•Pr(s=1

13、x)shouldbenon-zeroforeachxi.e.atleastoneinstanceofeachwordshouldbeselected.SampleSelectionBiasinP

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。