资源描述:
《Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、DiverseClassiersforDisambiguationTasksComparison,ptimization,Combination,andEvolutionakubZavrel
2、SvenDegroeve}Anneool
3、WalterDaelemans
4、ristiinaokinen}
5、CTS-anguageTe
hnologyGroup,UniversityofAntwerpfzavrel
6、kool
7、daelemguia.ua.a
.be}CenterforEvolutionary
8、anguageEngineering,eper,Belgiumfsven.degroeve
9、kristiina.jokinengsail.
omAbstra
tnthispaperwereportpreliminaryresultsfromanongoingstudythatinvestigatestheperfor-man
eofma
hinelearning
lassiersonadiversesetofaturalanguagero
essing()tasks.First,we
omparea
10、numberofpopularexistinglearningmethods(euralnetworks,emory-basedlearning,Ruleindu
tion,De
isiontrees,aximumEntropy,Winnower-
eptrons,aiveBayesandSupportVe
tora
hines),anddis
usstheirpropertiesvisavistypi
aldatasets.ext,weturntomethodstooptimizethepara
11、metersofsinglelearningmethodsthrough
ross-validationandevolutionaryalgorithms.Thenweinvestigatehowwe
angetthebestofallsinglemethodsthrough
ombinationofthetestedsystemsin
lassierensembles.Finallywedis
ussnewandmorethoroughmethodsofautomati
ally
onstru
tingensemb
12、lesof
lassiersbasedonthete
hniquesusedforparameteroptimization.eywords:odelsandalgorithmsfor
omputationalneuralar
hite
tures1ntrodu
tionnre
entyearstheeldofaturalanguagero
essing()hasbeenradi
allytransformedbyaswit
hfromadedu
tivemethodology(i.e.expl
13、ainingdatafromtheoriesormodels
onstru
tedmanually)toanindu
tivemethodology(i.e.derivingmodelsandtheoriesfromdata)(seee.g.Ab-ney(1996)forareview).Animportant
omponentofthistransformationistherealizationthatmanytasks
anbemodeledassimple
lassi
ationtasksorasens
14、emblesofsimple
lassi-ers(Daelemans,1996;Ratnaparkhi,1997).Thushasbeenableto
apitalizeonalargebodyofresear
hintheeldofma
hinelearningandstatisti
almodeling.This,a
ompaniedbythe
ontinuingexplosionof
omputerpower,storagesize,andavailabilityoftraining
orpora,h
15、asleadtoin
reasinglya
uratelanguagemodelsforaqui
klygrowingnumberoflanguagemodelingtasks.However,whi
hma
hinelearningmethodshavethebestperforman
eondatasetsisstil