Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E

Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E

ID:37657611

大小:351.71 KB

页数:20页

时间:2019-05-27

Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E_第1页
Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E_第2页
Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E_第3页
Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E_第4页
Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E_第5页
资源描述:

《Diverse Classiers for NLP Disambiguation Tasks Comparison, Optimization, Combination, and E》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、DiverseClassi ersforDisambiguationTasksComparison,ptimization,Combination,andEvolutionakubZavrel

2、SvenDegroeve}Anneool

3、WalterDaelemans

4、ristiinaokinen}

5、CTS-anguageTe hnologyGroup,UniversityofAntwerpfzavrel

6、kool

7、daelemguia.ua.a .be}CenterforEvolutionary

8、anguageEngineering,eper,Belgiumfsven.degroeve

9、kristiina.jokinengsail. omAbstra tnthispaperwereportpreliminaryresultsfromanongoingstudythatinvestigatestheperfor-man eofma hinelearning lassi ersonadiversesetofaturalanguagero essing()tasks.First,we omparea

10、numberofpopularexistinglearningmethods(euralnetworks,emory-basedlearning,Ruleindu tion,De isiontrees,aximumEntropy,Winnower- eptrons,aiveBayesandSupportVe tora hines),anddis usstheirpropertiesvisavistypi aldatasets.ext,weturntomethodstooptimizethepara

11、metersofsinglelearningmethodsthrough ross-validationandevolutionaryalgorithms.Thenweinvestigatehowwe angetthebestofallsinglemethodsthrough ombinationofthetestedsystemsin lassi erensembles.Finallywedis ussnewandmorethoroughmethodsofautomati ally onstru tingensemb

12、lesof lassi ersbasedonthete hniquesusedforparameteroptimization.eywords:odelsandalgorithmsfor omputationalneuralar hite tures1ntrodu tionnre entyearsthe eldofaturalanguagero essing()hasbeenradi allytransformedbyaswit hfromadedu tivemethodology(i.e.expl

13、ainingdatafromtheoriesormodels onstru tedmanually)toanindu tivemethodology(i.e.derivingmodelsandtheoriesfromdata)(seee.g.Ab-ney(1996)forareview).Animportant omponentofthistransformationistherealizationthatmanytasks anbemodeledassimple lassi ationtasksorasens

14、emblesofsimple lassi- ers(Daelemans,1996;Ratnaparkhi,1997).Thushasbeenableto apitalizeonalargebodyofresear hinthe eldofma hinelearningandstatisti almodeling.This,a ompaniedbythe ontinuingexplosionof omputerpower,storagesize,andavailabilityoftraining orpora,h

15、asleadtoin reasinglya uratelanguagemodelsforaqui klygrowingnumberoflanguagemodelingtasks.However,whi hma hinelearningmethodshavethebestperforman eondatasetsisstil

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。