资源描述:
《常微分方程(吉林大学) CAD2》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、5~©§6>f()¯Ìo]IKJJIIJI3ÆêÆÆ1113£¶w«'4òÑ1ÙÐÈ©{¯ÌIKJJIIJI1213£¶w«'4òÑ1ÙÐÈ©{§2;;;...§§§))){{{¯ÌIKJJIIJI1213£¶w«'4òÑ1ÙÐÈ©{§2;;;...§§§))){{{2.6T§¯ÌIKJJIIJI1213£¶w«'4òÑ1ÙÐÈ©{§2;;;...§§§))){{{2.6T§Ä¤©/ª©§M(x,y)dx+N(x,y)dy=0.(2.20)¯ÌIKJJIIJI1213£¶
2、w«'4òÑ1ÙÐÈ©{§2;;;...§§§))){{{2.6T§Ä¤©/ª©§M(x,y)dx+N(x,y)dy=0.(2.20)¯ÌIKXJ3¼êU(x,y),¦JJIIdU(x,y)=M(x,y)dx+N(x,y)dy,JI1213=U(x,y)=M(x,y),U(x,y)=N(x,y),(2.21)£xyK¡(2.20)T§,½©§.¶w«'4òÑe§(2.20)´T§,3¼êU(x,y),¦dU(x,y)=M(x,y)dx+N(x,y)dy≡0.¯ÌIKJJIIJI1313£¶w«'4òÑ
3、e§(2.20)´T§,3¼êU(x,y),¦dU(x,y)=M(x,y)dx+N(x,y)dy≡0.u´U(x,y)≡CÒ´§(2.20)ÛªÏ),ùpC´?¿~ê.¯ÌIKJJIIJI1313£¶w«'4òÑe§(2.20)´T§,3¼êU(x,y),¦dU(x,y)=M(x,y)dx+N(x,y)dy≡0.u´U(x,y)≡CÒ´§(2.20)ÛªÏ),ùpC´?¿~ê.ù,·g,JÑXe¯K:¯ÌIKJJIIJI1313£¶w«'4òÑe§(2.20)´T§,3¼êU(x,y),¦dU(x,y)=M
4、(x,y)dx+N(x,y)dy≡0.u´U(x,y)≡CÒ´§(2.20)ÛªÏ),ùpC´?¿~ê.ù,·g,JÑXe¯K:¯Ì(1)XÛ½§(2.20)´T§?IKJJIIJI1313£¶w«'4òÑe§(2.20)´T§,3¼êU(x,y),¦dU(x,y)=M(x,y)dx+N(x,y)dy≡0.u´U(x,y)≡CÒ´§(2.20)ÛªÏ),ùpC´?¿~ê.ù,·g,JÑXe¯K:¯Ì(1)XÛ½§(2.20)´T§?IK(2)XJ(2.20)´T§,XÛ¦¼êU(x,y)?JJIIJI13
5、13£¶w«'4òѽ½½nnn2.3.¼êM(x,y)ÚN(x,y)þuÝ/G:a6、)þuÝ/G:a7、(x,y).òÑlMy(x,y)≡Uxy(x,y),Nx(x,y)≡Uyx(x,y).¯ÌIKJJIIJI1513£¶w«'4òÑlMy(x,y)≡Uxy(x,y),Nx(x,y)≡Uyx(x,y).d®,My(x,y)ÚNx(x,y)ëY,Uxy(x,y)=Uyx(x,y),lMy(x,y)=Nx(x,y),=(2.22)¤á.¯ÌIKJJIIJI1513£¶w«'4òÑlMy(x,y)≡Uxy(x,y),Nx(x,y)≡Uyx(x,y).d®,My(x,y)ÚNx(x,y)ëY,Uxy(x,y)=Uyx(x,y),l
8、My(x,y)=Nx(x,y),=(2.22)¤á.2y¿©5,=l(2.22)¤áíyd(2.23)½(2.24)¤LѼêU(x,y)÷v(2.21).¯ÌIKJJIIJI1513£¶w«'4òÑlMy(x,y)≡Uxy(x