欢迎来到天天文库
浏览记录
ID:37611713
大小:308.68 KB
页数:7页
时间:2019-05-26
《导数的计算教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.1几个常用函数导数(教案)教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式;2、能利用导数公式求简单函数的导数。教学重难点:能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用教学过程:检查预习情况:见学案目标展示:见学案合作探究:探究任务一:函数的导数.问题:如何求函数的导数新知:表示函数图象上每一点处的切线斜率为.若表示路程关于时间的函数,则,可以解释为即一直处于静止状态.试试:求函数的导数反思:表示函数图象上每一点处的切线斜率为.若表示路程关于时间的函数,则,可以解释为探究任务二:在同一平面直角坐标系中,画出函数的图象,并根据导数定义,求它们的导数
2、.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数增(减)的快慢与什么有关?典型例题1.函数的导数根据导数定义,因为所以函数导数表示函数图像上每一点处的切线的斜率都为0.若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.2.函数的导数因为所以函数导数表示函数图像上每一点处的切线的斜率都为1.若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为1的匀速运动.3.函数的导数因为所以函数导数表示函数图像上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化.另一方面,从导数作为函数在
3、一点的瞬时变化率来看,表明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快.若表示路程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为.4.函数的导数因为所以函数导数[来源:]5.函数的导数6推广:若,则反思总结1.利用定义求导法是最基本的方法,必须熟记求导的三个步骤:,,.2.利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.当堂检测1.的导数是()A.0B.1C.不存在D.不确定2.已知,则()A.0B.2C.6D.93.在曲线上的切线的倾斜角为的点为()A.B.C.D.4.过曲线上点且与过这点的切线平
4、行的直线方程是5.物体的运动方程为,则物体在时的速度为,在时的速度为.板书设计略作业略3.2.2基本初等函数的导数公式及导数的运算法则(教案)教学目标:1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。教学重难点::基本初等函数的导数公式、导数的四则运算法则教学过程:检查预习情况:见学案目标展示:见学案合作探究:复习1:常见函数的导数公式:(1)基本初等函数的导数公式表函数导数(2)根据基本初等函数的导数公式,求下列函数的导数.(1)与(2)与2.(1)导数的运算法则导数运算法则1.2.3.推
5、论:(常数与函数的积的导数,等于常数乘函数的导数)提示:积法则,商法则,都是前导后不导,前不导后导,但积法则中间是加号,商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)(2);(3);(4);【点评】①求导数是在定义域内实行的.②求较复杂的函数积、商的导数,必须细心、耐心.典型例题例1假设某国家在20年期间的年均通贷膨胀率为5%,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有所以(元/年)因此,在第
6、10个年头,这种商品的价格约为0.08元/年的速度上涨.例2日常生活中的饮用水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为.求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90%;(2)98%.解:净化费用的瞬时变化率就是净化费用函数的导数.(1)因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.(2)因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬
7、时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.反思总结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.当堂检测1.函数的导数是()A.B.
此文档下载收益归作者所有