欢迎来到天天文库
浏览记录
ID:37610833
大小:34.62 KB
页数:3页
时间:2019-05-26
《垂直于弦的直径教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1、2垂直于弦的直径第一课时教学目标1、知识目标:了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.2、技能目标:从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.3、情感目标:在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,发展学生有条理的思考能力及语言表达能力.重难点:1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及
2、利用垂径定理解决一些实际问题.教学准备:三角板圆规教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.学生四人一组讨论下
3、面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作
4、“圆弧”或“弧AC”.大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.(学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径.3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的.因此,我们可以得到:圆是轴对称图形,其对称轴是任意一条过圆心的直线.(学生活动)请同
5、学按下面要求完成下题:如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由.(老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM=BM,,,即直径CD平分弦AB,并且平分及.这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.下面我们用逻辑思维给它证明一下:已知:直径CD、弦AB且CD⊥AB垂足为M求证:AM=BM,,.分析:要证AM=BM,只要证AM、BM构成的两个三角形全等.因此,只要连结O
6、A、OB或AC、BC即可.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧例:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?(分析及解答见幻灯片)五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆的有关概念;2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.3.垂径定理及其推论以及它们的应用.六、布置作业七、综合提高
7、题1.如图24-11,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM⊥CD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.
此文档下载收益归作者所有