简单相关与简单回归

简单相关与简单回归

ID:37555624

大小:858.10 KB

页数:63页

时间:2019-05-12

简单相关与简单回归_第1页
简单相关与简单回归_第2页
简单相关与简单回归_第3页
简单相关与简单回归_第4页
简单相关与简单回归_第5页
资源描述:

《简单相关与简单回归》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第九章简单相关与简单回归第一节概念复习:中学数学中的函数关系自然界中:现象之间的关系性状之间的关系依变量和因变量之间的关系:人的身高与年龄的关系疫病的发生与消毒的关系等等这些关系在取得数据后可以进行量化、也可以用某一个关系式来表示,这就是相关和回归变量之间的关系有以下几种:两个变量的关系:与◆简单相关(线性关系)◆曲线相关(非线性关系)+多项式多个变量的关系:◆多元相关(线性关系)与(非线性关系)◆典范相关与第二节相关关系一、相关系数的确定对某一个样品,同时测量其两个指标(或性状),得到两个变量,一个记为x,另一个记为y每一样品就有一对x和y,

2、共观测了n个样品,因而记录了n对(x,y)将这n对(x,y)在一个直角坐标系内描点,并观察这些点的位置、排列和趋向这些点排列得越整齐,表明这两个变量的关系越紧密,即这两个指标的关系越密切反之,则表示这两个指标的关系越松散两个指标的这种关系及其性质可以用一个数值来表示,这个数值就是相关系数在已经描点的直角坐标系中找到这些点的中心位置将直角坐标系平移到以为新原点的位置上,所有点的相对位置并没有变,但各个点的坐标值变了,即由原来的变为并被新坐标系分到4个象限中分布在Ⅰ、Ⅲ象限内的点其坐标乘积为分布在Ⅱ、Ⅳ象限内的点其坐标乘积为求所有点的坐标乘积和这一

3、坐标乘积和将出现三种情况:表示分布在Ⅰ、Ⅲ象限内的点多表示分布在Ⅱ、Ⅳ象限内的点多表示这些点在4个象限内分布很均匀称为离均差乘积和,简称乘积和:SP第一、二两种情况所得到的数值的绝对值越大,就表示两个变量的关系越紧密因此我们可以用乘积和的大小来表示两个变量关系的性质和密切程度但x、y是有单位的,且变异程度也不同,每批资料所得到的数值对子数也不等因此,应对变量进行标准化,将其化成相对数,相乘并相加后再行平均对总体而言,我们可以得到:对样本而言,就得到:和是纯量,无单位,可以用来表示不同总体和样本两个变量的密切程度和性质称为双变量总体的相关系数称为

4、双变量样本的相关系数样本的相关系数还可以这样写:即分子为乘积和,或协方差分母为两变量平方和的乘积平方根,或两个标准差相关系数的性质和取值范围:当大多数点在Ⅰ、Ⅲ象限时,则当大多数点在Ⅱ、Ⅳ象限时,则当所有的点:或全在Ⅰ、Ⅲ象限,或全在Ⅱ、Ⅳ象限内,则这些点必排成一条直线,这时,这就是函数关系,函数关系在生物界是不存在的当这些点很均匀地分散于4个象限时,我们有:则或,表示两变量不相关,称为零相关零相关在生物界中也很少存在的取值范围为,的绝对值越大,表示两变量的关系越紧密;反之,的绝对值越小,则表示两变量的关系越松散在实际工作中,我们总是以样本的相

5、关系数来估计总体相关系数,因此,也有以上这些性质在生物学科中,许多变量的关系是不确定的,因此用一个数量关系来表示两变量的关系就尤为重要在讨论两变量的关系时,有两种情况需要考虑:如果仅考虑两变量关系的性质及密切程度,而不考虑两者的依从关系或因果关系,这两变量是平行的,仅仅为了方便和人为的需要,将其中一个作为x,另一个作为y,这样所得到的数学关系称为相关模型如果两变量的确有主从关系或因果关系,而我们也希望知道两者的变化规律,这样的数学关系就称为回归模型相关模型和回归模型两者关系紧密,但性质不同这由两变量在不同的模型中所扮演的角色能看出来决定系数的取

6、值范围为,且均为正值,因此不能表示两变量的性质的含义是:在变量x和y的总变异中,可以相互用线性关系说明的部分在总变异中所占的比例在很多情况下,用来表示两变量的关系,有可能会夸大相关的程度,而使用则可以更真实地反映两变量的关系如当时,才有,即变量x和y的线性关系所占的比例才超过50%二、相关系数的计算相关系数的实际使用公式为:(请推导)例:测定某消毒药物的使用量x()和消毒效果y(以所饲养的实验鸡的健康率表示)两者数据如下,试分析这两个变量的相关关系:x30354045505560y73788788939496首先计算一级数据:三、相关系数的显著

7、性检验相关系数是否显著(即是否具有真实性),应对其进行检验检验的假设是:检验的方法是t-test:但我们可以由t-公式反推出的临界值来:已制成现成的值表,因此只需将求得的在相应自由度下查表,与表中的相比较即可本例中,否定,接受,即所得相关系数是极显著的或:查附表15,得所得是极显著的所谓显著或极显著,就是说,有95%或99%的把握认为这一是真实存在的,或这两个变量间的确存在相关如果不显著,并不能简单地认为这两个变量间不存在相关,因为可能还有其他原因相关系数的分等完全相关:零相关:弱相关:中等相关:强相关:-1-0.67-0.3300.330.6

8、71四、相关系数的置信区间在的总体中,的抽样分布并不服从t-分布或正态分布,因此在确定的置信区间时应对进行转换然后根据作关于的的置信区间然后将这一置信

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。